$Millennia^{^{TM}}\ IR$

Diode-pumped, cw Infrared Laser

User's Manual

$Millennia^{^{TM}}IR$

Diode-pumped, cw Infrared Laser

User's Manual

Spectra-Physics
Spectra-Physics Lasers, Inc.

1335 Terra Bella Avenue Post Office Box 7013 Mountain View, CA 94039-7013

This manual contains information you need in order to safely install, align, operate, maintain, and service your MillenniaTM IR diode-pumped, continuous-wave, infrared laser. The system comprises three elements: the Millennia laser head, the T40 power supply and the control module. The latter is a table-top controller that is provided with the system.

The "Introduction" contains a brief description of the Millennia IR laser and its power supply, controller and chiller.

Following that section is an important chapter on safety. The Millennia IR is a Class IV laser and, as such, emits laser radiation which can permanently damage eyes and skin. This section contains information about these hazards and offers suggestions on how to safeguard against them. To minimize the risk of injury or expensive repairs, be sure to read this chapter—then carefully follow these instructions.

"Laser Description" contains a short section on laser theory regarding the Nd:YVO₄ crystal that is used in the Millennia IR. It is followed by a more detailed description of the Millennia IR laser system. The chapter concludes with system specifications.

The next few chapters describe the Millennia IR controls, then guide you through its installation, alignment and operation. The last part of the manual covers maintenance and service and includes a replacement parts list and a list of world-wide Spectra-Physics Lasers service centers you can call if you need help.

Whereas the "Maintenance" section contains information you need to keep your laser clean and operational on a day-to-day basis, "Service and Repair" is intended to help you guide your Spectra-Physics Lasers field service engineer to the source of any problems. *Do not attempt repairs yourself while the unit is still under warranty*; instead, report all problems to Spectra-Physics Lasers for warranty repair.

This product has been tested and found to conform to "Directive 89/336/ EEC for electromagnetic Compatibility." Class A compliance was demonstrated for "EN 50081-2:1993 Emissions" and "EN 50082-1:1992 Immunity" as listed in the official *Journal of the European Communities*. It also meets the intent of "Directive 73/23/EEC for Low Voltage." Class A compliance was demonstrated for "EN 61010-1:1993 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory use" and "EN 60825-1:1992 Radiation Safety for Laser Products." Refer to the "EC Declaration of Conformity" statements in Chapter 2.

Finally, if you encounter any difficulty with the content or style of this manual, please let us know. The last page is a form to aid in bringing such problems to our attention.

Thank you for your purchase of Spectra-Physics Lasers instruments.

Table of Contents

Preface	iii
Warnings	ix
Standard Units	xi
Unpacking and Inspection	xiii
Unpacking Your Laser System Components Accessory Kit	xiii
Chapter 1: Introduction	ix xi xiii xiii xiii xiii 1-1 1-1
The Millennia™ IR Advantage The Laser System Laser Head Power Supply Control Module Patents	1-2 1-2 1-2 1-3
Chapter 2: Laser Safety	2-1
Precautions For The Safe Operation Of Class IV High Power Lasers Maintenance Necessary to Keep this Laser Product in Compliance with Center for Devices and Radiological Health (CDRH) Regulations CDRH Requirements for Operation with the Control Module Cover Safety Interlock Laser Head Power Supply CDRH/CE Radiation Control Drawing CDRH/CE Warning Labels EC Declaration of Conformity (Emissions) EC Declaration of Conformity (Low Voltage) Sources for Additional Information Laser Safety Standards Equipment and Training	2-3 2-4 2-4 2-6 2-7 2-8 2-9 2-10
Chapter 3: Laser Description	
Emission and Absorption of Light Population Inversion Resonant Optical Cavity Nd ³⁺ as an Excitation Medium Diode-pumped Laser Design The Millennia™ IR System Overview	3-2 3-4 3-5 3-6

Millennia IR

	The Millennia IR Laser Head	.3-10
	The Z-head	.3-10
	The Beam Delivery Arm	.3-11
	The T40 Power Supply	
	FCbar	
	The FCbar System	
	Specifications	
	Outline Drawings	.3-14
Ch	apter 4: Controls, Indicators and Connections	4-1
	Introduction	
	Laser Head Controls	
	External Controls.	
	Internal Controls	
	Indicators	
	Connections	
	Millennia IR Control Module	
	Controls	
	Indicators	
	Connections	
	T40 Power Supply	
	Controls	
	Indicators	.4-6
	Connections	.4-6
_		
Ch	apter 5: Installation and Alignment	5-1
	Laser Installation	.5-1
	Installing the Laser Head	
	Installing the Control Module	
	Installing the Power Supply	.5-3
	Alignment	.5-3
Ch	apter 6: Operation	6-1
O		
	Using the Control Module	
	The Menu System	
	The Main Menu	
	The Setup Menu	
	The Standby Menu	
	The Information Menu	
	System Start-up/Shut Down	
	Turning On the Laser, Cold Start	
	Turning On the Laser, Warm Start	
	Optimizing Laser Output	
	Turning Off the Laser	
	The RS-232 Serial Port	
	Communications Parameters	
	Command/Query/Response Format	
	Commands	
	Oueries	6-12

Chapter 7: Maintenance	
Preventive Maintenance	
Chapter 8: Service and Repair	8-1
Troubleshooting Guide	
Chapter 9: Customer Service	
Customer Service	9-1 9-2
Appendix A: Error Codes	
Notes	
Spectra-Physics Lasers User's Manual—Problems and So	lutions

List of Figures

Figure 1-1: The Millennia IR System1-1	
Figure 2-1: These CE and CDRH standard safety warning labels would	
be appropriate for use as entry warning signs (EN 60825-1, ANSI 4.3.10.1)	,
Figure 2-2: Folded Metal Beam Target	
Figure 2-3: The Power Supply Connector Panel	
Figure 2-4: Laser Head Emission Indicator, Shutter and	
Safety Interlock Switch and Key Holder Location2-5	,
Figure 3-1: Electrons occupy distinct orbitals that are defined by the probability	
of finding an electron at a given position, the shape of the orbital being	
determined by the radial and angular dependence of the probability	<u>,</u>
Figure 3-2: A Typical Four-level Transition Scheme	
Figure 3-3: Frequency Distribution of Longitudinal Modes for a Single Line	
Figure 3-4: Energy Level Scheme for the Nd ³⁺ ion	
Figure 3-5: Nd ³⁺ absorption spectra compared to emission spectra of a Black	
Body Source (a), Krypton Arc Lamp (b) and Laser Pump Diode (c)	ĵ
Figure 3-6: Mode Matching	
Figure 3-7: The Millennia IR System	j
Figure 3-8: The Millennia IR Laser Head	
Figure 3-9: Schematic of the Millennia II Laser Head	j
Figure 3-10: The Z-Head (top view)3-1	1
Figure 4-1: The Millennia IR Laser Head4-1	
Figure 4-2: The Millennia IR Laser Head Rear Panel	
Figure 4-3: The Millennia IR Control Module4-3	,
Figure 4-4: The T40 Power Supply Control Panel4-5	,
Figure 5-1: The Millennia IR Laser Head Rear Panel	
Figure 6-1: The Millennia IR Control Module Showing the Default Main Menu	
Figure 6-2: The Millennia IR Menus6-2	
Figure 6-3: Laser head PC board showing the location of baud rate DIP switch S ₁ 6-1	0
Figure 7-1: Lens Tissue Folded for Cleaning7-4	
List of Tables	
Table 3-1: Millennia IR Specifications	2
Table 6-1: Query Errors	
Table 6-2: Error Return List	

Warning Conventions

The following warnings are used throughout this manual to draw your attention to situations or procedures that require extra attention. They warn of hazards to your health, damage to equipment, sensitive procedures, and exceptional circumstances. All messages are set apart by a thin line above and below the text as shown here.

Laser radiation is present.

Danger!

Conditions or action may present a hazard to personal safety.

Warning!

Condition or action may cause damage to equipment.

Caution!

Condition or action may cause poor performance or error.

Note

Text describes exceptional circumstances or makes a special reference.

Don't Touch!

Do not touch.

Eyewear Required

Appropriate laser safety eyewear should be worn during this operation.

Standard Units

The following units, abbreviations, and prefixes are used in this Spectra-Physics Lasers manual:

Quantity	Unit	Abbreviation
mass	kilogram	kg
length	meter	m
time	second	S
frequency	hertz	Hz
force	newton	N
energy	joule	J
power	watt	W
electric current	ampere	Α
electric charge	coulomb	С
electric potential	volt	V
resistance	ohm	Ω
inductance	henry	Н
magnetic flux	weber	Wb
magnetic flux density	tesla	Т
luminous intensity	candela	cd
temperature	celcius	С
pressure	pascal	Pa
capacitance	farad	F
angle	radian	rad

			Pref	fixes				
tera	(1012)	Т	deci	(10-1)	d	nano	(10-9)	n
giga	(10^9)	G	centi	(10 ⁻²)	С	pico	(10 ⁻¹²)	р
mega	(10^6)	M	mill	(10^{-3})	m	femto	(10 ⁻¹⁵)	f
kilo	(10^3)	k	micro	(10-6)	μ	atto	(10 ⁻¹⁸)	а

Unpacking and Inspection

Unpacking Your Laser

Your Millennia IR laser was packed with great care, and its container was inspected prior to shipment—it left Spectra-Physics Lasers in good condition. Upon receiving your system, immediately inspect the outside of the shipping containers. If there is any major damage (holes in the containers, crushing, etc.), insist that a representative of the carrier be present when you unpack the contents.

Carefully inspect your laser system as you unpack it. If any damage is evident, such as dents or scratches on the covers or broken knobs, etc., immediately notify the carrier and your Spectra-Physics Lasers sales representative.

Keep the shipping containers. If you file a damage claim, you may need them to demonstrate that the damage occurred as a result of shipping. If you need to return the system for service at a later date, the specially designed container assures adequate protection.

System Components

The following components comprise the Millennia IR laser system:

- Millennia IR Laser Head
- T40 Power Supply
- Control Module

Verify all three components are present. The laser head, power supply, and controller are all shipped in one container.

Accessory Kit

Included with the laser system is this manual, a packing slip listing all the parts shipped, and an accessory kit containing the following items:

- 1 US or European (German) power cord, 2 m
- $a^{5/32}$ in. Allen (hex) driver for adjusting the feet (laser height)
- table clamp kit: 4 clamps and hardware
- plastic hemostat
- lens tissue
- tweezers

- 2 keys for the power supply
- Z-head output coupler
- fiber endcaps
- Z-head telescope endcaps
- jumper plug for RS-232 only operation.

Chapter 1 Introduction

The Millennia™ IR Advantage

The Millennia IR is an *all solid-state*, high power, cw laser that provides greater than 10 W of 1064 nm infrared output from a standard 110 or 220 Vac, single-phase outlet. It is a perfect high-power infrared source for pumping infrared fiber lasers and other tunable infrared solid-state media. The advantages of a diode-pumped front end are many—including ultralow optical noise, low utilities costs, reliability, and compact packaging.

For long-term, hands-off operation, the Millennia IR features a sealed Zhead cavity that requires no external adjustment. The system is completely air-cooled and employs an advanced self-contained temperature stabilization loop to ensure the Nd:YVO₄ gain medium is maintained at optimum temperature for outstanding stability. All this performance is possible through the integration of our patented, high-efficiency **FCbar**TM pump diodes.

Figure 1-1: The Millennia IR System

The Laser System

The Millennia IR system comprises three basic components:

- Millennia IR laser head
- T40 power supply
- Control Module

Laser Head

The Millennia IR laser head houses the neodymium yttrium vanadate (NdYVO₄) gain medium, the diode laser fiber delivery and telescope focusing systems, and the cooling system. Externally, it resembles a very short, standard small-frame ion laser head. Indeed, its dimensions (except length) and output beam location make it a drop-in replacement for one.

Because the laser head contains a highly efficient, diode-pumped Nd:YVO₄ laser crystal, it is not subjected to the large heat load of the high energy plasma tube in an ion laser. Therefore, water cooling (and the subsequent water jacket) is not required. Without the heavy magnet assembly or resonator, the Millennia IR laser head is shorter and weighs far less than an equivalent ion laser head; it can be easily handled and moved by one person.

Cooling is provided by a fan beneath the Z-head that pulls air in through the bottom plate and blows it against the heat webs on the bottom of the Z-head. The heated air is vented through the top of the unit. This system virtually eliminates the low-frequency optical noise that is a major problem for water-cooled ion lasers.

The Millennia IR delivers beam pointing stability as good as that from an actively stabilized ion laser. And to further improve stability and provide long-term, hands-off operation, the intracavity beam path is totally enclosed.

Power Supply

The T40 power supply houses the two fiber-coupled, 20 W diode laser bars that pump the Millennia IR head. Each diode bar is operated at less than 75% of its rated power in order to maintain ideal operating conditions for the diodes and, thus, ensure a long lifetime. The power supply also contains the control logic and power modules for the system, as well as the refrigeration unit that cools the diodes.

The power supply is air cooled and requires no water or external cooling connections. For electrical power, it simply requires a standard 110 or 220 Vac 10 A power source.

The power supply is small, about 31 x 41 x 64 cm (13 x 16 x 25 in.), and it weighs about 50 kg (110 lb). Rubber casters are provided for mobility and to permit easy stowage. It can also be rack-mounted.

A single umbilical cable connects the supply to the laser head. It contains the power and control cables and the fiber bundles.

Control Module

The Millennia IR controller provides easy control from virtually any point in the laboratory. An 8-foot cable connects the controller to the laser head.

A simple, menu-driven control program that uses "soft" keys and clear, large characters on a back-lit display provides an easy method of controlling and monitoring the system. The intuitive, layered menu structure provides operational options along with diagnostic information for fast, efficient control of the unit.

For users that prefer to operate the laser remotely, either directly or via a computer program, a standard serial link is provided on the laser head for connection to a computer or terminal.

Remote Operation

The laser head incorporates a standard RS-232 serial port for remote operation. Command control is transferred to this port via the control module.

Patents

The Millennia IR system is manufactured under the following patents:

4,653,056	4,761,785	4,942,582
4,656,635	4,785,459	5,080,706
4,665,529	4,837,771	5,127,068
4,701,929	4,872,177	5,410,559
4,723,257	4,894,839	5,412,683
4,739,507	4,908,832	5,436,990
4.756.003	4,913,533	5,446,749

Chapter 2 Laser Safety

The Spectra-Physics Lasers Millennia IR laser is a *Class IV—High Power Laser* whose beam is, by definition, a safety and fire hazard. Take precautions to prevent accidental exposure to both direct and reflected beams. Diffuse as well as specular beam reflections can cause severe eye or skin damage.

Because the Millennia IR is designed for operation at 1064 nm and its output is invisible, it is especially dangerous. Infrared radiation passes easily through the cornea, which, when focussed on the retina, can cause instantaneous and permanent damage.

Precautions For The Safe Operation Of Class IV High Power Lasers

- Wear protective eyewear at all times; selection depends on the wavelength and intensity of the radiation, the conditions of use, and the visual function required. Protective eyewear is available from suppliers listed in the *Laser Focus World*, *Lasers and Optronics*, and *Photonics Spectra* buyer's guides. Consult the ANSI and ACGIH standards listed at the end of this section for guidance.
- Maintain a high ambient light level in the laser operation area so the eye's pupil remains constricted, reducing the possibility of damage.
- To avoid unnecessary radiation exposure, keep the protective cover on the laser head at all times.
- Avoid looking at the output beam; even diffuse reflections are hazardous.
- Avoid blocking the output beam or its reflections with any part of the body.
- Establish a controlled access area for laser operation. Limit access to those trained in the principles of laser safety.
- Post prominent warning signs near the laser operating area (Figure 2-1).
- Set up experiments so the laser beam is either above or below eye level.
- Provide enclosures for beam paths whenever possible.
- Set up shields to prevent any unnecessary specular reflections.

• Set up a beam dump to capture the laser beam and prevent accidental exposure (Figure 2-2).

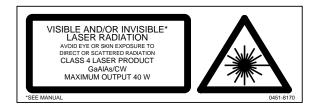


Figure 2-1: These CE and CDRH standard safety warning labels would be appropriate for use as entry warning signs (EN 60825-1, ANSI 4.3.10.1).

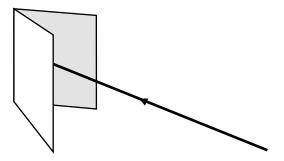


Figure 2-2: Folded Metal Beam Target

Caution!

Use of controls or adjustments, or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Operating this laser without due regard for these precautions or in a manner that does not comply with recommended procedures may be dangerous. At all times during installation, maintenance or service of your laser, avoid unnecessary exposure to laser or collateral radiation* that exceeds the accessible emission limits listed in "Performance Standards for Laser Products," *United States Code of Federal Regulations*, 21CFR1040.10(d).

Follow the instructions contained in this manual to ensure proper installation and safe operation of your laser.

^{*} Any electronic product radiation, except laser radiation, emitted by a laser product as a result of or necessary for the operation of a laser incorporated into that product.

Maintenance Necessary to Keep this Laser Product in Compliance with Center for Devices and Radiological Health (CDRH) Regulations

This laser product complies with Title 21 of the *United States Code of Federal Regulations*, Chapter 1, subchapter J, parts 1040.10 and 1040.11, as applicable. To maintain compliance with these regulations, once a year, or whenever the product has been subjected to adverse environmental conditions (e.g., fire, flood, mechanical shock, spilled solvent, etc.), check to see that all features of the product identified on the CDRH Radiation Control Drawing (found later in this chapter) function properly. Also, make sure that all warning labels remain firmly attached.

1. Verify removing the auxiliary interlock (INTLK AUX) connector on the power supply prevents laser operation.

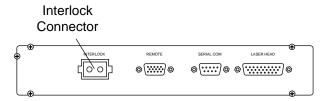


Figure 2-3: The Power Supply Connector Panel

- 2. Verify the laser can only be turned on when the key switch is in the ON position, and that the key can only be removed when the switch is in the off position.
- Verify the emission indicator provides a visible signal when the laser emits accessible laser radiation that exceeds the accessible emission limits for Class I.*
- 4. Verify the time delay between turn-on of the emission indicator and starting of the laser; it must give enough warning to allow action to avoid exposure to laser radiation.
- 5. Verify the beam attenuator (shutter) actually blocks access to laser radiation.
- 6. Verify the safety interlock stops emission of laser or collateral radiation upon removal or displacement of the interlocked laser head cover.
- 7. When the safety interlock is defeated, verify the defeat key is clearly visible and that it prevents replacement of the cover.

^{* 0.39} µW for continuous-wave operation where output is limited to the 400 to 1400 nm range.

CDRH Requirements for operation with the Control Module

The Millennia IR laser head and the T40 power supply comply with all CDRH safety standards when operated with the Millennia IR control module. However, when the laser is operated through the serial interface (i.e., without the control module), you must provide the following in order to satisfy CDRH regulations:

- A key switch—that limits access to the laser and prevents it from being turned on. It can be a real key lock, a removable computer disk, a password that limits access to computer control software, or a similar "key" implementation. The laser must only operate when the "key" is present and in the "on" position.
- An emission indicator—that indicates laser energy is present or can be accessed. It can be a "power-on" lamp, a computer display that flashes a statement to this effect, or an indicator on the control equipment for this purpose. It need not be marked as an emission indicator so long as its function is obvious. Its presence is required on any control panel that affects laser output.

Cover Safety Interlock

The Millennia IR system has a safety interlock for the laser head cover only. Removing this cover turns off the laser diodes. The cover must be on, or the interlock defeated, before the laser will operate.

Laser Head

Installing the safety interlock key in the laser head allows the laser to operate with its cover removed (refer to Figure 2-4).

Collateral radiation! While the laser head cover is removed, be extremely careful to avoid exposure to laser or collateral radiation.

The laser head cover cannot be replaced until the safety interlock key has been removed. Shut off the laser before removing the interlock key and replacing the cover.

Power Supply

Because there are no user-serviceable parts inside the power supply or internal adjustments that can be made by the user, the Millennia IR T40 power supply requires no cover safety interlock switch.

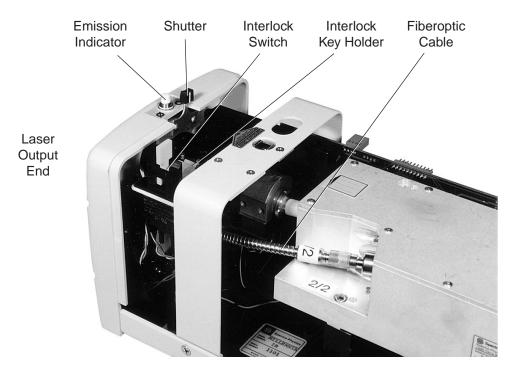
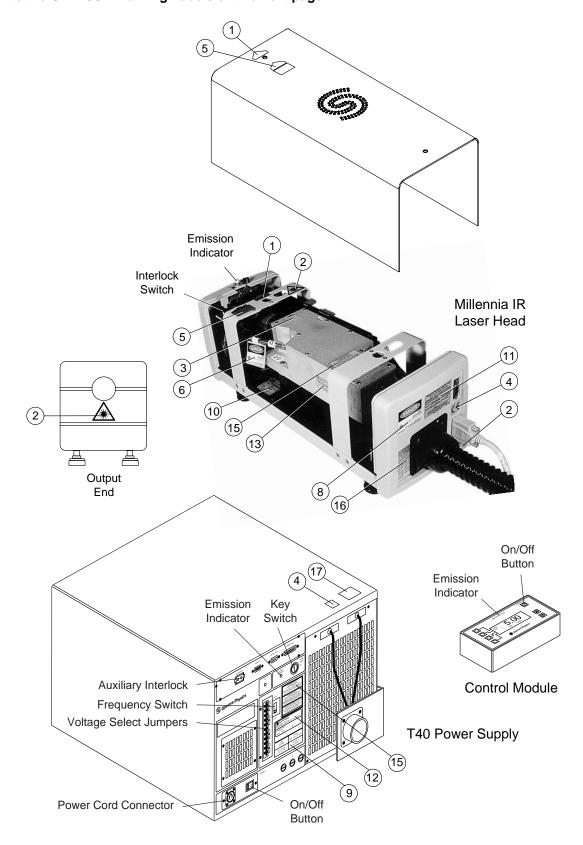
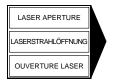



Figure 2-4: Laser Head Emission Indicator, Shutter and Safety Interlock

CDRH/CE Radiation Control Drawing

Refer to the CDRH/CE Warning Labels on the next page.


CDRH/CE Warning Labels

CE Aperture Label (2)

CE Aperture Label Fiber-optic Cable(3)

Label (4)

CDRH Danger Label Interlock Defeated (5)

CDRH Danger Label Fiber Cable, Side A (6)

CDRH Danger Label Fiber Cable, Side B (6)

CE Danger Label Fiber Cable (7)

CE Danger Label Laser Radiation (8)

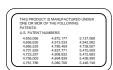
Fuse Label Power Supply (9)

Resonator Model/Serial Identification Label (10)

Laser Head Model/Serial Identification Label (11)

Power SupplyModel/Serial Identification Label (12)

Z-Head Model/Serial Identification Label (13)


CE Warning Label Interlock Defeated (14)

VISIBLE AND/OR INVISIBLE LASER RADIATION Avoid eye or skin exposure to direct or scattered radiation.
Nd:YVO ₄ , Nd:YAG or Nd:YLF Laser. Various ultraviolet, visible or infrared wavelengths may be emitted. Consult instruction manual.
Class 4 laser product per IEC 825-1 (1993)
SICHTBARA UND/ODER UNSICHTBARE LASERSTRAHLUNG Bestrahlung von Auge oder Haut durch direkte oder Streustrahlung vermeiden.
Nd:YVO ₄ , Nd:YAG oder Nd:YLF Laser. Verschiedene Ultraviolett., Infrarot- oder sichtbara Laserstrahlungen Können austreten, Nähere Informationen: siehe Bedienungsanieltung.
Laser Klasse 4 nach IEC 825-1 (1993)
RAYONNEMENT LASER VISIBLE ET/OU INVISIBLE Exposition dangereuse de l'oeil ou de la peau au rayonnement direct ou diffus.
Laser Nd:YVO ₄ , Nd:YAG ou Nd:YLF. Emission laser ultraviolette, visible ou infrarouge. Consulter le manuel d'Installation.
Apparell a' laser de classo 4 IEC 825-1 (1993)

CE Warning Label (15)

Spectra Physics Lasers
POST OFFICE BOX 7013
MT. VIEW, CA 94039-7013
THIS PRODUCT IS
PROTECTED BY U.S.A.
PATENT NOS. 4,653,056,
4,656,635, 4,665,529,
4,701,929, 4,723,257,
4,756,003, 4,758,459,
4,837,771, 4,872,177,
4,894,839, 4,908,832,
5,127,068, 5,410,559,
5,412,683, 5,436,990,
5,446,749

Patent Label Laser Head (16)

Patent Label Power Supply (17)

EC Declaration of Conformity

We.

Spectra-Physics Lasers, Inc. Industrial and Scientific Lasers 1330 Terra Bella Avenue P.O. Box 7013 Mountain View, CA. 94039-7013 United States of America

declare under sole responsibility that the:

Millennia IR Diode Pumped Solid State Laser System with Model T40-8SS power supply and control module,

Manufactured after December 31, 1996

meets the intent of "Directive 89/336/EEC for Electromagnetic Compatibility."

Compliance was demonstrated (Class A) to the following specifications as listed in the official *Journal of the European Communities*:

EN 50081-2:1993 Emissions:

EN55011 Class A Radiated EN55011 Class A Conducted

EN 50082-1:1992 Immunity:

IEC 801-2 Electrostatic Discharge IEC 801-3 RF Radiated IEC 801-4 Fast Transients

I, the undersigned, hereby declare that the equipment specified above conforms to the above Directives and Standards.

Steve Sheng

Vice President and General Manager Spectra-Physics Lasers, Inc.

Industrial and Scientific Lasers

December 31, 1996

New Shong

EC Declaration of Conformity

We,

Spectra-Physics Lasers, Inc. Industrial and Scientific Lasers 1330 Terra Bella Avenue P.O. Box 7013 Mountain View, CA. 94039-7013 United States of America

declare under sole responsibility that the

Millennia IR Diode Pumped Solid State Laser System coupled with the Model T40-8SS power supply and control module,

meets the intent of "Directive 73/23/EEC, the Low Voltage directive."

Compliance was demonstrated to the following specifications as listed in the official *Journal of the European Communities*:

EN 61010-1: 1993 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory use:

EN 60825-1: 1993 Safety for Laser Products.

I, the undersigned, hereby declare that the equipment specified above conforms to the above Directives and Standards.

Steve Sheng

Vice President and General Manager

Spectra-Physics Lasers, Inc.

Bene Shong

Industrial and Scientific Lasers

February 21, 1997

Sources for Additional Information

The following are some sources for additional information on laser safety standards, safety equipment, and training.

Laser Safety Standards

Safe Use of Lasers (Z136.1) American National Standards Institute (ANSI) 11 West 42nd Street New York, NY 10036 Tel: (212) 642-4900

Occupational Safety and Health Administration (Publication 8.1-7) U. S. Department of Labor 200 Constitution Avenue N. W., Room N3647 Washington, DC 20210 Tel: (202) 219-8151

A Guide for Control of Laser Hazards American Conference of Governmental and Industrial Hygienists (ACGIH) 1330 Kemper Meadow Drive Cincinnati, OH 45240 Tel: (513) 742-2020

Laser Safety Guide Laser Institute of America 12424 Research Parkway, Suite 125 Orlando, FL 32826 Tel: (407) 380-1553

Compliance Engineering (Publisher of Standards) One Tech Drive Andover, MA 01810-2452 Tel: (508) 681-6600 or (508) 681-6673

Equipment and Training

Laser Focus World Buyer's Guide Laser Focus World Penwell Publishing 10 Tara Blvd., 5th Floor Nashua, NH 03062 Tel: (603) 891-0123

Lasers and Optronics Buyer's Guide Lasers and Optronics Gordon Publications 301 Gibraltar Drive P.O. Box 650 Morris Plains, NJ 07950-0650 Tel: (201) 292-5100 Photonics Spectra Buyer's Guide Photonics Spectra Laurin Publications Berkshire Common PO Box 4949 Pittsfield, MA 01202-4949

Tel: (413) 499-0514

A Brief Review of Laser Theory

Emission and Absorption of Light*

Laser is an acronym derived from Light Amplification by Stimulated Emission of Radiation. Thermal radiators, such as the sun, emit light in all directions, the individual photons having no definite relationship with one another. But because the laser is an oscillating amplifier of light, and because its output comprises photons that are identical in phase and direction, it is unique among light sources. Its output beam is singularly directional, monochromatic, and coherent.

Radiant emission and absorption take place within the atomic or molecular structure of materials. The contemporary model of atomic structure describes an electrically neutral system composed of a nucleus with one or more electrons bound to it. Each electron occupies a distinct orbital that represents the probability of finding the electron at a given position relative to the nucleus. Each orbital has a characteristic shape that is defined by the radial and angular dependence of that probability, e.g., all *s* orbitals are spherically symmetrical, and all *p* orbitals surround the x, y, and z axes of the nucleus in a double-lobed configuration (Figure 3-1). The energy of an electron is determined by the orbital that it occupies, and the over-all energy of an atom—its energy level—depends on the distribution of its electrons throughout the available orbitals. Each atom has an array of energy levels: the level with the lowest possible energy is called the ground state, and higher energy levels are called excited states. If an atom is in its ground state, it will stay there until it is excited by external forces.

Movement from one energy level to another—a transition—happens when the atom either absorbs or emits energy. Upward transitions can be caused by collision with a free electron or an excited atom, and transitions in both directions can occur as a result of interaction with a photon of light. Consider a transition from a lower level whose energy content is E_1 to a higher one with energy E_2 . It will only occur if the energy of the incident photon matches the energy difference between levels, i.e.,

$$h\mathbf{v} = E_2 - E_1 \tag{1}$$

where h is Planck's constant, and v is the frequency of the photon.

^{* &}quot;Light" will be used to describe the portion of the electromagnetic spectrum from far infrared to ultraviolet.

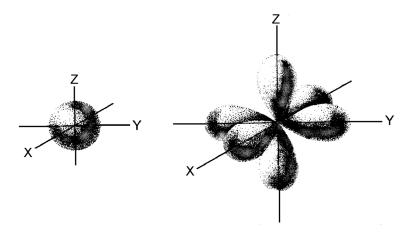


Figure 3-1: Electrons occupy distinct orbitals that are defined by the probability of finding an electron at a given position, the shape of the orbital being determined by the radial and angular dependence of the probability.

Likewise, when an atom excited to E_2 decays to E_1 , it loses energy equal to $E_2 - E_1$. The atom may decay spontaneously, emitting a photon with energy hy and frequency

$$v = \frac{E_2 - E_I}{h}$$
 [2]

Spontaneous decay can also occur without emission of a photon, the lost energy taking another form, e.g., transfer of kinetic energy by collision with another atom. An atom excited to E_2 can also be stimulated to decay to E_1 by interacting with a photon of frequency v, emitting energy in the form of a pair of photons that are identical to the incident one in phase, frequency, and direction. This is known as stimulated emission. By contrast, spontaneous emission produces photons that have no directional or phase relationship with one another.

A laser is designed to take advantage of absorption, and both spontaneous and stimulated emission phenomena, using them to create conditions favorable to light amplification. The following paragraphs describe these conditions.

Population Inversion

The net absorption at a given frequency is the difference between the rates of emission and absorption at that frequency. It can be shown that the rate of excitation from E_1 to E_2 is proportional to both the number of atoms in the lower level (N_1) and the transition probability. Similarly, the rate of stimulated emission is proportional to the population of the upper level (N_2) and the transition probability. Moreover, the transition probability depends on the flux of the incident wave and a characteristic of the transition called its "cross section." The absorption coefficient depends only on the difference between the populations involved, N_1 and N_2 , and the flux of the incident wave.

When a material is at thermal equilibrium, there exists a Boltzmann distribution of its atoms over the array of available energy levels with most atoms in the ground state. Since the rate of absorption of all frequencies exceeds that of emission, the absorption coefficient at any frequency is positive.

If enough light of frequency v is supplied, the populations can be shifted until $N_1 = N_2$. Under these conditions the rates of absorption and stimulated emission are equal, and the absorption coefficient at frequency v is zero. If the transition scheme is limited to two energy levels, it is impossible to drive the populations involved beyond equality; that is, N_2 can never exceed N_1 because every upward transition is matched by one in the opposite direction.

However, if three or more energy levels are employed, and if their relationship satisfies certain requirements described below, additional excitation can create a population inversion where $N_2 > N_I$.

A model four-level laser transition scheme is depicted in Figure 3-2. A photon of frequency v_I excites—or "pumps"—an atom from E_I to E_4 . If the E_4 to E_3 transition probability is greater than that of E_4 to E_I , and if the lifetime of an atom at E_4 is short, the atom will decay almost immediately to E_3 . If E_3 is metastable, i.e., atoms that occupy it have a relatively long lifetime, the population will grow rapidly as excited atoms cascade from above. The E_3 atom will eventually decay to E_2 , emitting a photon of frequency v_2 . Finally, if E_2 is unstable, its atoms will rapidly return to the ground state, E_I , keeping the population of E_2 small and reducing the rate of absorption of v_2 . In this way the population of E_3 is kept large and that of E_2 remains low, thus establishing a population inversion between E_3 and E_2 . Under these conditions, the absorption coefficient at v_2 becomes negative. Light is amplified as it passes through the material, which is now called an "active medium." The greater the population inversion, the greater the gain.

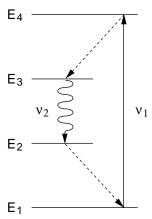


Figure 3-2: A Typical Four-level Transition Scheme

A four-level scheme has a distinct advantage over three-level systems, where E_I is both the origin of the pumping transition and the terminus of the lasing transition. Also, the first atom that is pumped contributes to the

population inversion in the four-level arrangement, while over half of the atoms must be pumped from E_I before an inversion is established in the three-level system.

Resonant Optical Cavity

To sustain lasing action, the gain medium must be placed in a resonant optical cavity. The latter can be defined by two mirrors which provide feedback to the active medium, i.e., photons emitted parallel to the cavity axis are reflected back into the cavity to interact with other excited states. Stimulated emission produces two photons of equal energy, phase, and direction from each interaction. The two photons become four, four become eight, and the numbers continue to increase geometrically until an equilibrium between excitation and emission is reached.

Both cavity mirrors are coated to reflect the wavelength, or wavelengths, of interest while transmitting all others. One of the mirrors, the output coupler, transmits a fraction of the energy stored within the cavity, and the escaping radiation becomes the output beam of the laser.

The laser oscillates within a narrow range of frequencies around the transition frequency. The width of the frequency distribution, the "linewidth," and its amplitude depend on the gain medium, its temperature, and the magnitude of the population inversion.

Linewidth is determined by plotting gain as a function of frequency and measuring the width of the curve where the gain has fallen to one half maximum ("full width at half maximum", or FWHM, Figure 3-3).

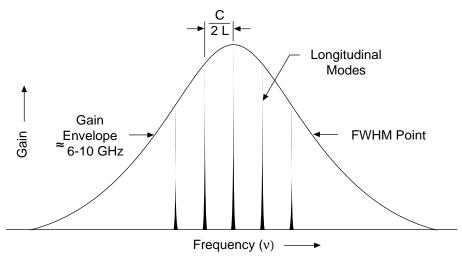


Figure 3-3: Frequency Distribution of Longitudinal Modes for a Single Line

The output of the laser is discontinuous within this line profile. A standing wave propagates within the optical cavity, and any frequency that satisfies the resonance condition

$$v_m = \frac{mc}{2L}$$
 [3]

will oscillate, where v_m is the frequency, c is the speed of light, L is the optical cavity length, and m is an integer. Thus, the output of a given line is a set of discrete frequencies, called "longitudinal modes," that are spaced such that

$$\Delta n = \frac{c}{2L} \tag{4}$$

Nd3+ as a Laser Medium

In commercial laser designs, the source of excitation energy for the gain medium is usually optical or electrical. Arc lamps are often employed to pump solid-state lasers, and the output of one laser can be used to pump another, e.g., a Ti:sapphire laser can be pumped by an argon ion laser or a diode laser can be used to pump a solid state laser. An electric discharge is generally used to excite gaseous media like argon or krypton. The Millennia IR uses the output from a diode laser to pump Nd³⁺ ions doped in a yttrium vanadate crystalline matrix (Nd:YVO₄).

The properties of neodymium-doped matrices, such as yttrium aluminum garnet (Nd:YAG) and yttrium lithium fluoride (Nd:YLF), are the most widely studied and best understood of all solid-state laser media. The four-level Nd³⁺ ion scheme is shown in Figure 3-4. The active medium is triply ionized neodymium which has principle absorption bands in the red and near infrared. Excited electrons quickly drop to the ${}^4F_{3/2}$ level, the upper level of the lasing transition, where they remain for a relatively long time (about 60 μ s for Nd:YVO₄).

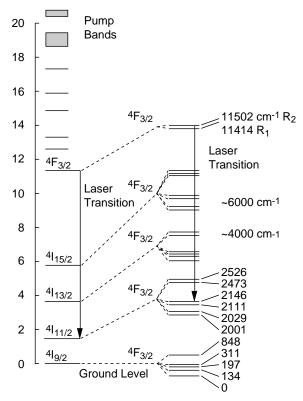


Figure 3-4: Energy Level Scheme for the Nd³⁺ Ion.

The most probable lasing transition is to the ${}^4I_{1/2}$ state, where a photon at 1064 nm is emitted. Because electrons in that state quickly relax to the ground state, its population remains low. Hence, it is easy to build a population inversion. At room temperature the emission cross section of this transition is high, so its lasing threshold is low. While there are competing transitions from the same upper state, most notably at 1319, 1338, and 946 nm, all have lower gain and a higher threshold than the 1064 nm transition. In normal operation, these factors and wavelength-selective optics limit oscillation to 1064 nm.

Diode-pumped Laser Design

Laser diodes combine very high brightness, high efficiency, monochromaticity and compact size in a near-ideal source for pumping solid-state lasers. Figure 3-5 shows the monochromaticity of the emission spectra of a laser diode compared to a krypton arc lamp and a black body source and compares that with the absorption spectra of the Nd³⁺ ion. The near-perfect overlap of the diode laser output with the Nd³⁺ absorption band ensures that the pump light is efficiently coupled into the laser medium. It also reduces thermal loading since any pump light *not* coupled into the medium is ultimately removed as heat.

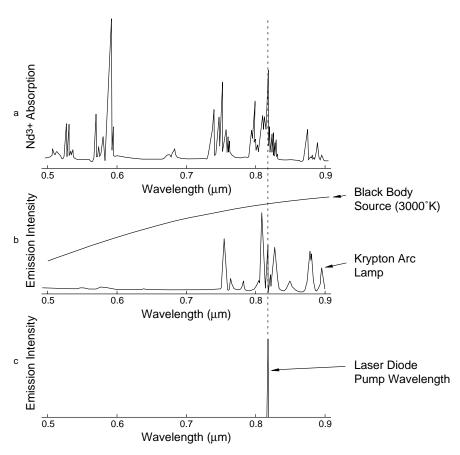


Figure 3-5: Nd³⁺ absorption spectra compared to emission spectra of a Black Body Source (a), Krypton Arc Lamp (b) and a Laser Pump Diode (c).

One of the key elements in optimizing the efficiency of a solid-state laser is maximizing the overlap of the regions of the active medium excited by the pumping source and the active medium occupied by the laser mode. The maximization of this overlap is often called mode matching, and in most applications, TEM_{00} is the laser mode that is most desired. A longitudinal pumping geometry provides this sort of optimal mode-match.

Longitudinal pumping allows the diode output to be focused on a volume in the active medium that best matches the radius of the TEM_{00} mode. In general, the TEM_{00} mode radius is chosen to be as small as possible to minimize the solid-state laser threshold. Figure 3-6 shows a schematic of a mode-matching design of this type.

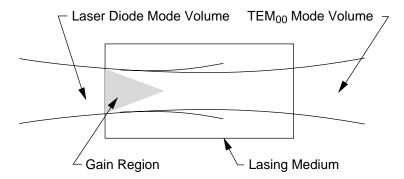


Figure 3-6: Mode Matching

For higher output power levels, a larger laser diode having a larger emission region is necessary. The diameter of the TEM_{00} mode volume must also be expanded to effectively mode-match the volume of the extended diode emission region. However, increasing the TEM_{00} mode volume raises the solid-state laser threshold. This is undesirable when attempting to create an efficient laser diode design.

At Spectra-Physics Lasers, we use laser diode bars made from a single monolithic piece of semiconductor material which typically contains ten to twenty laser diodes. The bars are ideal as high power pump sources. These devices have the same high efficiency as the discrete diode devices, yet they allow for the manufacture of a much simpler and more reliable high-power pump laser design than is possible in a design incorporating an equal number of discrete devices (for the same output power level). However, the active emission area for these new devices is increased from the 200 μm range found in low power diodes, to 1 cm: a "ribbon of light." The use of these bars has, therefore, been limited due to the difficulty of mode matching their outputs.

A number of attempts were recently made by some manufacturers to couple the output of a laser diode bar into a multimode optical fiber. The results have been discouraging, so far, with coupling efficiencies on the order of 60–70% with a numerical aperture of 0.4. This makes for an expensive, inefficient pump source.

At Spectra-Physics Lasers, we have developed and patented a vastly more efficient method of fiber coupling the output of the laser diode bar. It is called FCbarTM. With this method, it is possible to achieve coupling efficiencies in excess of 90% with a numerical aperture of 0.1. With such high coupling efficiency and brightness, high power diode-pumped laser designs are readily achieved.

The Millennia™ IR System

The Millennia IR system comprises three basic components:

- Millennia IR laser head
- T40 power supply
- Control Module

The following sections will be confined to descriptions of the laser head and power supply. The control module is fully described in Chapter 6, "Operation."

Figure 3-7: The Millennia IR System

Overview

Figure 3-8 shows the main components of the Millennia IR laser head. The output from two high-power, fiber-coupled laser diode bars (**FCbar**) is used to end-pump the laser gain medium, a neodymium yttrium vanadate (Nd:YVO₄) crystal (see Figure 3-9). The **FCbar** design allows the diode bars to be placed in the power supply, which removes their heat load from the laser head and facilitates their field replacement because realignment of the Millennia IR cavity is not required.

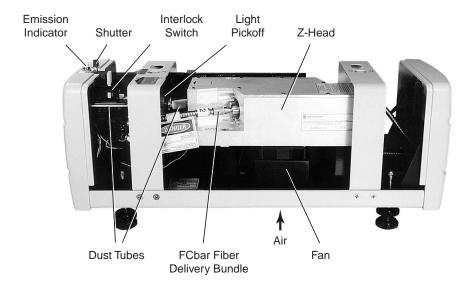


Figure 3-8: The Millennia IR Laser Head

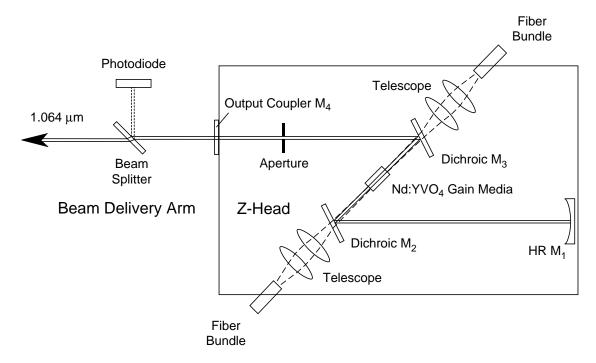


Figure 3-9: Schematic of the Millennia IR Laser Head

Telescopes are used to focus the pump light through dichroic fold mirrors M_2 and M_3 and into the laser crystal where 1064 nm infrared intracavity light is generated. M_2 and M_3 are highly transmissive at the diode pump wavelength and highly reflective at 1064 nm. High reflector mirror M_1 and output coupler M_4 define the cavity. The aperture maintains the beam at a size that is optimal for beam overlap in the Nd:YVO $_4$ crystal, thus ensuring efficient cavity light generation in the TEM $_{00}$ mode. Virtually all the 1064 nm infrared light is transmitted by the output coupler and directed out of the Z-head.

A beam splitter is used to sample the output and a photodiode provides feedback to the pump diode drivers to provide a constant output in power mode.

The Millennia IR Laser Head

The laser head is designed for maximum reliability with minimum complexity. A resonator is not required because the entire laser consists of the Z-head itself. Both the high reflector and output coupler are part of the Z-head, thus the entire intracavity beam path is enclosed for maximum stability and prolonged hands-off operation. The inherent operation is so stable and the output so quiet that no adjustments are needed for normal operation. Control of the entire system is provided via a simple, menu-driven control module.

Two major components comprise the laser head (Figure 3-9):

- Z-head
- Beam delivery arm

The Z-head

The Z-head is a compact, fully enclosed module that is so named for the beam path within it (see Figure 3-10). It contains the neodymium yttrium vanadate (Nd:YVO₄) laser crystal which is the "driving engine" of the Millennia IR laser. The crystal is end-pumped by two fiber-coupled diode bar (**FCbar**) modules and provides a very high cw, small signal gain. It is capable of producing over 10 W of near diffraction-limited, 1064 nm infra-red power with a conversion efficiency greater than 50%.

As shown in the figure, the outputs from the two pump diode modules in the power supply are fiber-coupled into the Z-head and focused into each end of the Nd:YVO₄ laser crystal. The diode pump light is absorbed by the crystal and emitted as output at 1064 nm. The 1064 nm output is resonated in the Millennia IR cavity and amplified through stimulated emission.

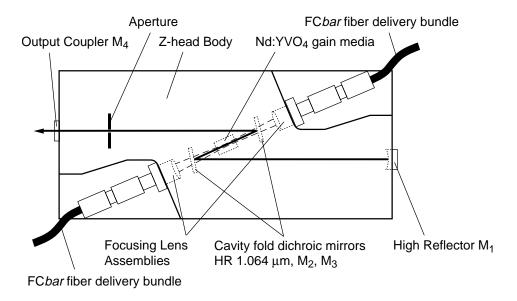


Figure 3-10: The Z-Head (top view)

The Beam Delivery Arm

Unlike other systems that require multiple feedback loops to maintain stable output, the Millennia IR is inherently stable within its operating range. It requires only one simple feedback loop to maintain its exceptional performance and maintain constant output power. The pick-off consists of a beam splitter and photodetector.

The T40 Power Supply

FCbar

The pump source for the Millennia IR laser head consists of two diode laser bars, each module capable of producing 20 W. The two modules are then coupled to optical fiber bundles that transport the diodes' output to each end of the laser crystal in the Z-head. This modular concept is called a "fiber-coupled bar" or **FCbar**TM.

The FCbar System

FCbar technology enables the high power levels available from the laser diode bars to efficiently end-pump the Nd:YVO₄ laser crystal. This is done by first collimating the output of the bar with a cylindrical microlens of high numerical aperture (the microlens is bonded to the diode bar in order to reduce the fast-axis divergence of the diode bar). The highly asymmetric light is then coupled into a fiber bundle, which in turn delivers exceptional brightness to the crystal. To stabilize the output wavelength of the diodes, the modules are mounted directly on a temperature regulated cold plate.

Because the coupling technology is so efficient, the 20 W diode modules are typically derated 75% to increase their operating lifetime.

The multimode optical fiber bundle is actually several fibers that are drawn together in a round bundle where the output end is typically 1 to 1.5 mm in diameter with a numerical aperture of about 0.1. Typically, 85 to 90 percent of the diode light is transmitted by the bundle; thus, up to 13 W of usable output is available from each derated laser diode bar at the output of the fiber bundle.

The **FC**bar modules mate with the fiber bundle through precision connections that are assembled and aligned at the factory. The bundles are then terminated at the Z-head with industry standard fiber-optic connectors. This provides a precise and repeatable attachment of the bundle to the Z-head and allows the **FC**bar modules to be replaced in the field, if necessary, without requiring a major realignment.

Specifications

Table 3-1: Millennia IR Specifications

Laser Output Characteristics¹

Power	> 10 W
Wavelength	1064 nm
Spatial Mode ²	TEM ₀₀
Beam diameter at 1/e ² points (nominal) ³	0.3 mm
Beam divergence, full angle	< 5 mrad
Polarization	>100:1, vertical
Power Stability ⁴	±1%
Beam Pointing Stability ⁵	<5 μrad/°C
Noise ⁶	<0.1% rms

¹ Specifications subject to change without notice.

 $^{^{2}}$ M^{2} <1.1; Beam ellipticity <10%.

 $^{^{3} \}pm 10\%$ measured at the exit port.

⁴ Measured over a 2 hour period after a 2-hour warm-up, from standby mode.

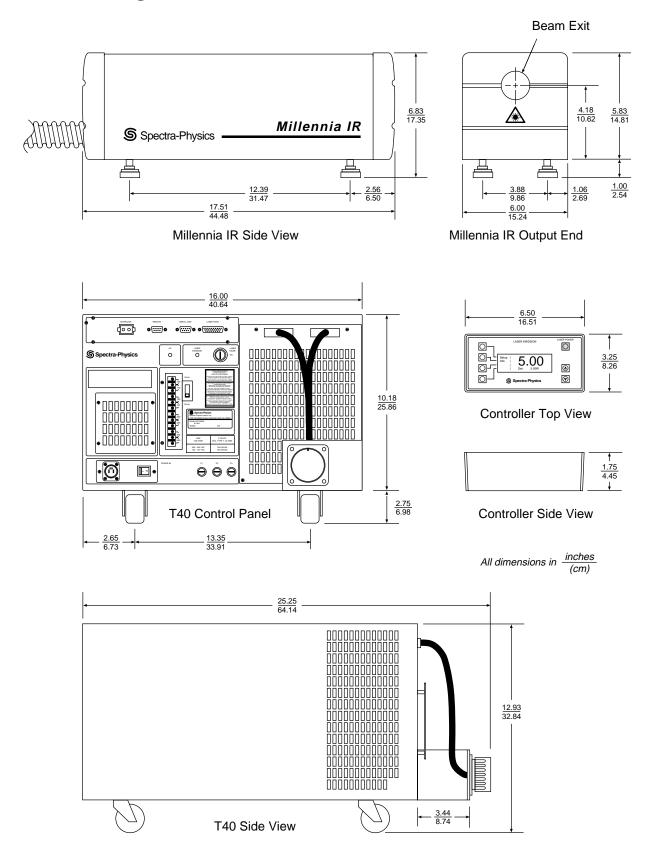
⁵ Measured as far-field x and y positions, after a 2-hour warm-up, from standby mode.

⁶ Measured over a 10 Hz to 10 MHz bandwidth at the specified output power.

Power Requirements

Power Supply	110 Vac ±10% at <10 A, 60 Hz
	220 Vac ±10% at <6 A, 50 Hz

Fuse Requirements


Voltage	Fuse (Type 3AG) F ₁ / F ₂ / F ₃
200 – 240 Vac	10 A / 10 A / 3 A
100 – 127 Vac	15 A / 15 A / 3 A

Dimensions

Laser Head	
Size	91.5 L x 15.2 W x 17.4 H cm
	(36.0 L x 6.0 W x 6.8 H in.)
Weight	8.0 kg (17.5 lb)
Umbilical Length	3.35 m (11 ft)
Power Supply	
Size	17.3 H x 15.2 W x 44.5 L cm*
	(6.8 H x 6.0 W x 17.5 L in.*)
Weight	50.1kg (110 lb)
Power Cable Length	2.44 m (8 ft)
Controller Size	8.26 H x 16.51 W x 4.45 L cm
	(3.25 H x 6.50 W x 1.75 L in.)
Controller Cable Length	2.44 m (8 ft)

^{*} With casters, add 6.9 cm or 2.7 in.

Outline Drawings

Introduction

This section defines the user controls, indicators and connections of the MillenniaTM IR laser system. It is divided into three sections: the Millennia IR laser head, the Millennia IR control module and the T40 power supply.

Figure 4-1 shows the location of the various components in the Millennia IR laser head.

Laser Head Controls

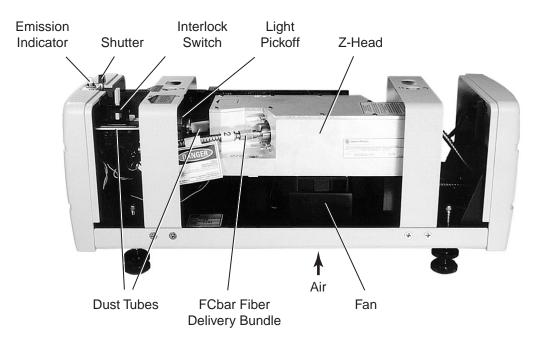


Figure 4-1: The Millennia IR Laser Head

External Controls

Shutter—blocks the output beam when the lever is moved to the blocking position (\emptyset) . The lever is located near the emission indicator on top of the output bezel. It is accessible when the cover is on.

Cover clamping screws (2)—hold the cover securely in place. One screw is located on top of the cover at each end of the laser. Use the Allen drivers provided to fasten and unfasten the ½ turn screws.

Foot height adjustments (4)—provide a means to level the laser and to adjust its height to match that of the target device. The legs are large screws with swivel feet that can be screwed up and down from inside the laser head using an Allen driver. Once the height adjustment has been made, a jam nut on each leg is tightened up against the chassis to lock them in place.

Internal Controls

There are no internal controls other than the interlock switch and, thus, there are no adjustments in the laser head.

Interlock switch—shuts the laser off immediately when the cover is removed. The switch is located behind the shutter near the output bezel. It can be defeated using the yellow plastic "I"-shaped key that is clamped to the vertical resonator plate near the switch. To defeat the switch, insert the key in the slot and press the key down against the spring, then rotate it 90° clockwise to lock it in place. To remove it, rotate it 90° counterclockwise and lift it out.

While the key is in the defeat position, the cover cannot be installed.

Indicators

There is only one indicator on the laser head:

Emission indicator light—warns of present or imminent laser radiation. This white-light CDRH indicator is located at the top center of the output bezel. A built-in delay between the turn on of the lamp and actual emission allows for evasive action in the event the system was started by mistake.

Connections

There are three connections on the Millennia IR rear panel (Figure 4-2): the permanently attached umbilical cable from the power supply, the 9-pin RS-232 serial port, and the 15-pin Millennia IR controller connector.

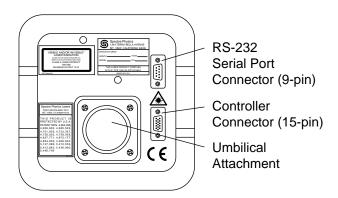


Figure 4-2: The Millennia IR Laser Head Rear Panel

Umbilical connector—provides control signals to and from the power supply, cooling water from the chiller, and laser output from the diodes. *This umbilical is permanently attached: do not try to remove it.* To move the laser system, set the laser head and the controller on top of the power supply and roll the system to its new location.

RS-232 serial port connector (9-pin, D-Sub)—provides attachment for a host system to operate the system remotely.

Controller connector (15-pin, D-Sub)—provides attachment for the Millennia IR control module.

Millennia IR Control Module

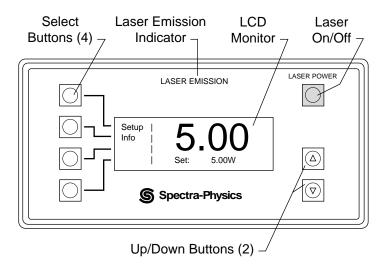


Figure 4-3: The Millennia IR Control Module

Controls

Seven buttons on the controller operate the Millennia IR laser (Figure 4-3).

Select buttons (4)—are located to the left of the LCD screen and are used to select one of the four possible actions that are shown on the left side of the screen. For example, pressing the top left button in Figure 4-3 brings up the Setup menu. When up/down arrows are shown on the screen, press the associated button to scroll the text.

LASER POWER button—performs 3 functions: (a) begins the laser warm-up cycle, (b) turns on the laser and (c) turns off the laser. (Note: the power supply must also be on and its LASER DIODE interlock keyswitch set to ON in order for the laser to turn on). Press the button once to begin the warm-up cycle. Then when the cycle completes, press and hold it in to turn on the laser. The LASER EMISSION indicator on the controller panel flashes and the emission indicator on the laser head turns on while the button is held in and emission is imminent (a CDRH delay of about 6 seconds). The indicator stops flashing and stays on when emission occurs.

Up/down buttons—in the lower right corner of the panel, when pressed, increase or decrease the value displayed on the screen (such as a power setpoint), or allow the operator to select a parameter from a list that is to be changed or displayed.

Indicators

LCD monitor—provides feedback and control of the laser, depending on which menu is displayed. Large digits always display *actual output power*. Below output power, displayed in smaller text is the output power setpoint (when power mode is selected), or the percentage of maximum current (when current mode is selected), or "RS-232 Enabled" if the system is being operated remotely via the RS-232 serial link.

LASER EMISSION indicator—flashes prior to laser emission, then stays on when laser output is present.

Connections

There are no connectors on the control module. The 3 m control cable is permanently attached. Do not try to remove it. The cable plugs into the 15-pin controller connector on the rear panel of the laser head.

T40 Power Supply

All controls, indicators and connections on the power supply are made on the front panel. Figure 4-4 shows the front panel.

Controls

Key switch—provides security to prevent unauthorized use of the laser. When power is applied and the key is inserted and turned to the ON position, the LASER EMISSION indicator lights and emission occurs after about a 6 second delay. Control then transfers to the Millennia IR controller or to the host system (via the RS-232 link), depending on configuration.

Frequency switch—provides a means to set the system for 50 or 60 Hz operation. Verify this switch is correctly set prior to turning on the system. To set it, slide it to the position that matches the line frequency you are using.

On/off switch—provides power to the laser system when set to the on (I) position. When first turned on, the power supply performs an internal diagnostic check and the doubler oven in the laser head is allowed to warm up. From a cold start, this takes about 30 minutes. It is therefore strongly recommended that this switch be left in the "on" position unless the system is not to be used for an extended period of time. For safety, however, turn off the LASER DIODE key and remove it to prevent unauthorized use of the laser.

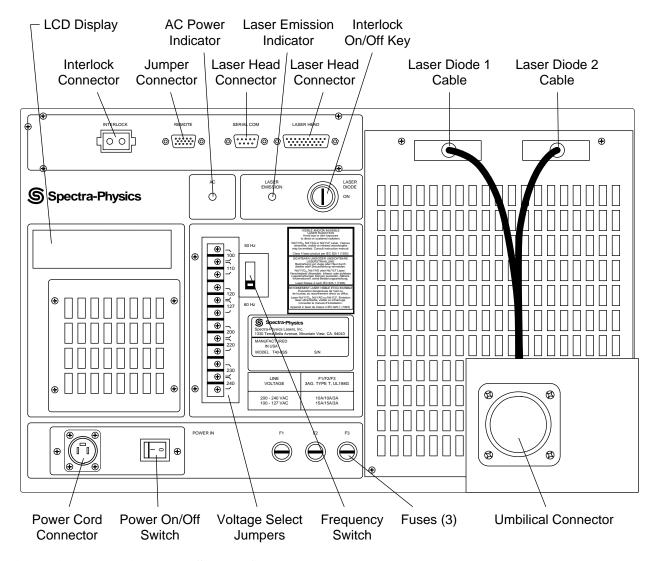


Figure 4-4: The T40 Power Supply Control Panel

Fuses (F_1, F_2, F_3) —provide a safety valve for various circuits. Replace fuses F_1 , F_2 and F_3 according to the table below for the line voltage used. To access a fuse, use a medium flat blade screwdriver to turn the slotted fuse cap counter-clockwise, then pull the cap off and remove the fuse. Assemble in reverse order.

 Voltage	Fuse (Type 3AG) F ₁ /F ₂ /F ₃
200 - 240 Vac	10 A/10 A/3 A
 100 – 127 Vac	15 A/15 A/3 A

Indicators

AC indicator—turns on immediately when line power is applied to the system and the power switch is turned on.

LASER EMISSION indicator—turns on when the LASER DIODE keyswitch is set to the ON position, thus indicating there is laser emission or that it is imminent.

LCD display—is a 4-line, 20-character display that shows the progress of the power-up diagnostics and will display error codes for any power supply failure(s). These codes are used by Spectra-Physics Lasers service technicians to diagnose problems in the power supply; they are not for use by the user.

Connections

INTERLOCK connector (2-pin)—provides attachment for a safety switch. These contacts must be shorted together before the laser will operate. A defeating jumper plug is installed at the factory to permit operation without a safety switch. The plug can be replaced with a similar non-shorting plug that is wired to auxiliary safety equipment (such as a door switch) to shut off the laser when actuated (opened). Such a switch must have a minimum rating of 100 mA at 12 V.

REMOTE connector (15-pin)—provides attachment for a jumpered plug that configures the T40 power supply for use with the Millennia IR laser. Do not remove the plug: doing so will keep the system from starting, or will shut it off if it is already on. Do not confuse this connector with the 15-pin connector on the laser head.

SERIAL COM connector (9-pin)—provides attachment for control lines from the umbilical. Do not disconnect the umbilical connector attached to it. Also, do not confuse it with the serial connector on the laser head which provides attachment for a terminal or computer.

LASER HEAD connector (27-pin)—provides attachment for control lines from the umbilical. Do not disconnect the umbilical connector.

Laser diode cable connectors (2)—provides attachment for the armored fiber-optic cables. These cables are permanently attached to the diode modules. Do not try to disconnect them. Call Spectra-Physics Lasers to have a service engineer replace the diodes when needed.

Power cord connector—provides attachment for the twist-on power cord provided with the unit. Connect the cord to a power source capable of providing 15/10 A at 110/220 V.

Voltage select jumper terminal block—provides a means for matching the system to the local power line. Use a screwdriver to loosen the screws, then position the jumpers according to the silkscreen for the voltage desired. After making any adjustments, verify the screws are tight.

Installation and Alignment

There are no internal controls to adjust or optics to change. This makes the Millennia IR laser very easy to set up and operate. The following instructions will get you operational in a very short time.

When you received your laser, it was packed with the laser head and power supply already connected. Do not disconnect the umbilical cables from either end!

Laser Installation

Note

The following installation procedure is not intended as a guide to the initial installation and set-up of your laser. Please call your Spectra-Physics Lasers service representative to arrange an installation appointment, which is part of your purchase agreement. Allow only personnel qualified and authorized by Spectra-Physics Lasers to install and set up your laser. Spectra-Physics Lasers provides training in the use of this laser. Please contact your Spectra-Physics Lasers representative if you desire training. You will be charged for repair of any damage incurred if you attempt to install the laser yourself, and such action might also void your warranty

All the tools and equipment you need to set up the Millennia IR laser are in your accessory kit.

Installing the Laser Head

- 1. Remove the laser head, power supply and control module from the shipping crate and inspect for damage. Refer to the "Unpacking and Inspection" notes at the front of this manual.
- 2. Move the laser system into place.

Warning!

Be careful when moving your system that any bend in the umbilical does not exceed the 10 cm (4 in.) minimum radius. Exceeding this limit can fracture and/or break the fiber bundles. Also, be careful not to snag any of the various cables extending from the power supply.

To move the laser, set the power supply on the ground and the laser head and controller on top of it, then roll the laser to the table. The

- laser head is much lighter than an ion laser of similar size (approximately 14 kg), and it can be picked up by one person.
- 3. Set the laser head on a suitable optical table and align it to the target system.
- 4. For now, roll the power supply under the table or out of the way. The umbilical and power cable are each about 3 m long.
- 5. Remove the laser head cover.

Two screws hold the cover on. Use one of the large-handled Allen drivers from the accessory kit to turn the screws ½ turn counterclockwise, then lift the cover off.

- 6. Adjust the height of the laser head.
 - a. Loosen the large locking nut on each leg. The nuts are threaded onto each leg and jam against the bottom of the base plate to lock the foot in place and to add stiffness to the foot.
 - b. From inside the laser head, use a ⁵/₃₂ in. Allen driver to adjust each leg by screwing it up and down.
 - c. When the height is correct, tighten the locking nuts up against the base plate again.
- 7. Secure the laser head to the table with the four foot clamps provided.
- 8. Replace the cover on the laser.

This completes the laser head installation procedure.

Installing the Control Module

Controller installation consists of setting the unit in a convenient place on the table and plugging the control cord into the 15-pin controller connector on the laser head rear panel (Figure 5-1).

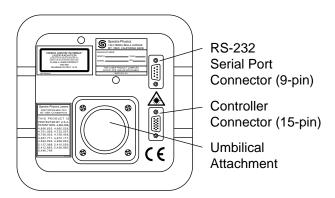


Figure 5-1: The Millennia IR Laser Head Rear Panel

If a remote host system is to be used to control the Millennia IR laser, refer to the end of Chapter 6, "Operation: The RS-232 Serial Port," for information on wiring and connections, baud rate, command language, etc.

Installing the Power Supply

- 1. Place the power supply in a convenient location within 3 m of the laser head (the length of the umbilical cable).
- 2. Verify the cable connections from the umbilical are still tight.
 - The REMOTE, SERIAL COM and LASER HEAD connectors should never be disconnected from the power supply panel. If, for some reason, they do get disconnected, take care to reconnect them. Each plug has a different number of pins so they cannot be swapped. Tighten the retaining screws when you are done.
- 3. Verify the interlock jumper is in place or, if desired, remove it and add a non-jumpered connector and wire it to a safety switch. The switch must be wired so that when the device is actuated (e.g., a door is opened), the switch opens and the laser turns off.
- 4. Verify the voltage selection jumpers are correctly set to match the voltage in your area.
 - To change the setting, simply loosen the screws and move the jumpers to the proper setting. Refer to the silk-screened voltage notation next to the terminal strip. If the voltage is changed, fuses F_1 and F_2 must also be changed. Refer to the fuse rating requirements for the voltage setting used in the specifications table in Chapter 3.
- 5. Verify the frequency switch is set to the line frequency in your area.
- 6. Attach the power cord to the power supply, then to the power source.

This completes the installation of the Millennia IR system.

Alignment

No formal alignment procedure is required for the Millennia IR laser system: there are no knobs to adjust or no optics to change. If you are ready to turn on the laser, refer to Chapter 6, "Operation," for instructions.

Chapter 6 Operation

Please read this entire chapter and Chapter 2 on laser safety before using your laser for the first time.

Using the Control Module

The controller is a convenient device for operating the Millennia IR laser (refer to Figure 6-1).

Use the four buttons on the left side of the panel to select one of the four possible options shown on the left side of the screen. For example, press the top left button to go to the Setup menu or the next button down to go to the Info menu, etc. As is the case here, not all menus use all the buttons.

The LASER POWER button turns the laser on and off.

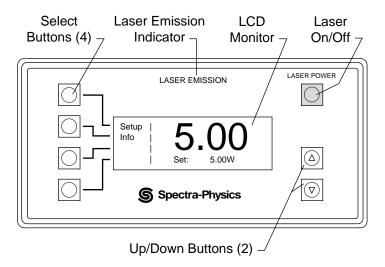


Figure 6-1: The Millennia IR Controller Showing the Default Main Menu.

The up/down buttons in the lower right corner either increase or decrease the value displayed on the screen (such as the power setpoint), or allow you to select or change a parameter from a list on the display.

The LCD screen displays several things, but what is displayed depends on the menu in use. The large digits always display *actual output power*, and below that, in smaller text, is either the output power setpoint (when power mode is selected) or the percentage of maximum current (when current mode is selected). RS-232 ENABLED is shown if the system is being operated remotely via the serial link.

In general, use:

- the Main menu to monitor output power and to set the power or current setpoint (the desired output).
- the Setup menu to select power or current mode and to select local or RS-232 control of the system. The RS-232 commands are listed at the end of this chapter.
- the Info menu to view the diode drive current, the temperature for each laser diode, and the revision level of the Millennia IR software. Also included is a history (HST) line that shows the last three system error codes.

Refer to the following sections for more information on each menu.

The Menu System

Four menus, Main, Setup, Standby, and Information, are used to control and monitor the Millennia IR. Sample menu displays are shown in Figure 6-2.

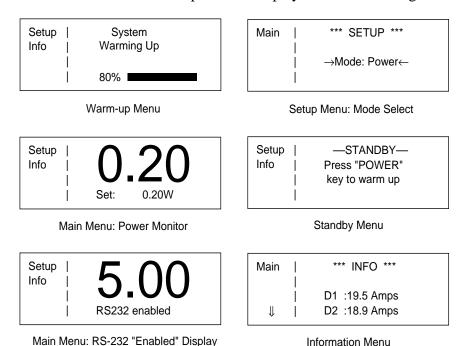


Figure 6-2: The Millennia IR Menus

The upper left-hand frame shows the warm-up menu that is displayed soon after the system is powered up from a cold start (the power supply was turned off). It allows you to monitor the warm-up process, which takes about 30 minutes. If you are controlling the system remotely using the serial interface, a query command allows you this same monitoring capability (refer to the "Queries" section later in this chapter).

The Standby menu is displayed anytime the laser is turned off for more than 30 minutes with the power supply left on.

The following sections describe the four menus.

The Main Menu

When the system is ready for operation following the warm-up sequence, the Main menu is displayed. From here you can set the output power and monitor system performance. The large letters indicate actual output power; the smaller letters below it indicate either the desired output power (the power setpoint when the system is set for power mode), the desired laser diode drive current (the current setpoint, as a percentage of maximum current, when the system is set for current mode), or RS-232 ENABLED when the system is operated remotely via the serial link. The left figure below shows the power mode display; current mode is shown on the right. When the system is tracking correctly in power mode, the two numbers, actual output power and setpoint, are the same, ± 0.01 W.

To change the power or current setpoint, simply press one of the up/down buttons. Note that when the buttons are held down, the setpoint numerical update pauses from time to time. This is normal. To change from power to current mode, or vice versa, use the Setup menu.

If an error occurs, ERROR flashes in the lower left corner of the Main menu. Press the lower left button to display the error source. (Error codes and their definitions are listed in Appendix A.) When the problem is corrected, the ERROR message turns off. If the error code is generated by the power supply, it is logged on the history (HST) line in the Info menu.

Menus available from the Main menu are:

- Setup
- Info

The Setup Menu

Use the Setup menu to change between power and current mode, or to select LOCAL control (using the hand-held controller) or remote control (via the RS-232 link). Access this menu from the Main menu.

Use the up/down buttons to toggle the selection indicated between the arrows. Selections include:

Mode: PowerMode: CurrentMode: RS-232

The new selection is activated upon return to the Main menu.

When RS-232 is selected, RS-232 is displayed on the Main menu, and control is transferred to the host system. The baud rate can be changed to match the speed of the host system. This setting, along with the software commands for serial control, are explained later in this chapter under "The RS-232 Serial Port."

The default RS-232 settings are:

- 9600 baud
- 8 data bits.
- no parity
- 1 stop bit

Pressing the Main button from the Setup menu returns you to the Main menu.

The Standby Menu

The Standby menu is displayed whenever the laser was placed in the Standby mode by turning off the laser for more than 30 minutes but leaving on the T40 power supply.

This display is not shown when the system is started cold, i.e., when the power supply has been turned off. Nor can it be accessed from any other menu. It appears automatically whenever the laser is turned off for more than 30 minutes with the power supply left on.

The Information Menu

The Info menu provides diagnostic information on the laser diodes. It also contains a history (HST) line that displays the three most recent system error codes for diagnostic purposes. The codes and their definitions are listed in Appendix A. Note that only the power supply codes, 0 through 126, are displayed. The Info menu is accessed from the Main menu.

Main	-	*** INFO ***
		D1 :19.5 Amps
\downarrow		D2 :18.9 Amps

Use the select buttons (not the up/down buttons) to scroll the screen (note the down arrow in the picture above). Two lines are displayed at a time as follows, from top to bottom:

- The drive current for each laser diode, D₁ and D₂.
 Note that it is normal to require greater than 60% of full current before achieving the threshold condition for green output power.
- The temperature of each laser diode.
- The error code history (HST) line.
- The revision level of the Millennia IR software. Have this revision number available whenever calling for service.

Pressing the Main button returns you to the Main menu.

System Start-up/Shut Down

There are two turn on sequences, one for a cold start when the T40 power supply was turned off, and one for a warm start when the system is in Standby mode (when the laser is off but the power supply was left on). Each sequence is described below.

Turning On the Laser, Cold Start

- 1. Verify that all connectors are plugged into the power supply (they should never be disconnected—if they were, refer to Chapter 5, "Installation and Alignment," for instructions on re-connecting them).
- 2. Turn on the power supply power switch.
- 3. Turn on the power supply key switch.

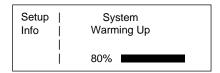
Power Supply Start-up

As the system starts up, the following message sequence is displayed on the power supply LCD screen:

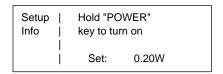
- "Spectra-Physics Lasers" followed by the software version number.
- "System Initializing"
- "Bypass delay time"
- "Laser Diodes Off"
- "Status Wait"
- "Cooling System Test"
- "Diode Safety Check"

If the key switch is not set to ON, the system will not start up and the following is displayed on the panel: "System Error, Open Interlock." Simply set the switch to ON to clear the error message and enable the system.

- "Adjusting Temperature"
 - This message remains on screen until the laser diodes are at operating temperature. At this time, the Warm-up menu is displayed on the controller.
- "Boot Complete, Laser Diodes Off, Power Mode Ready"


 This is the final display from the power supply, which indicates it is ready for use.

Controller Start-up


The following message sequence is displayed on the controller as the system turns on:

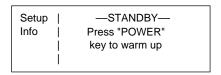
- "Spectra-Physics Lasers"
- "Welcome to the new Millennia IR"

After the welcome message, the system begins the warm-up cycle, which can take up to 30 minutes. A time bar is displayed (0 to 100%) to indicate progress:

4. When the system has warmed up, the following screen is displayed:

Press and hold in the LASER POWER button until the laser starts. When the button is pressed, the LASER EMISSION light flashes for a few seconds. Then, when laser emission occurs, it stops flashing and remains on, and the emission indicator on the laser head turns on to indicate radiation is present.

At this point, the Main menu is displayed and, for safety, output power ramps up slowly to 0.20 W. 0.20 W is displayed if the laser was set to power mode when it was last used, or an equivalent current value is displayed if the laser was set to current mode. Power mode is shown in the Main menu below.



- 5. Use the Setup menu to change the laser mode, if desired.
- 6. From the Main menu, set laser output power using the up/down buttons. Actual output power will follow the setpoint value.

This completes the cold start turn-on sequence. The system is now ready for use.

Turning On the Laser, Warm Start

This procedure assumes the unit was left in Standby mode after it was last used, i.e., the laser was turned off, but the power supply was left on. When this is the case, the following Standby prompt is displayed.

1. Press the LASER POWER button to begin the short warm-up cycle.

The following prompt is displayed for about 2 minutes while the diode temperature stabilizes:

2. When the system has warmed up, the following screen is displayed:

Press and hold in the LASER POWER button until the laser starts. When the button is pressed, the LASER EMISSION light flashes for a few seconds. Then, when laser emission occurs, it stops flashing and remains on, and the emission indicator on the laser head turns on to indicate radiation is present.

At this point, the Main menu is displayed and, for safety, output power ramps up slowly to 0.20 W. 0.20 W is displayed if the laser was set to power mode when it was last used, or an equivalent current value is displayed if the laser was set to current mode. Power mode is shown in the Main menu below.

- 3. Use the Setup menu to change the laser mode, if desired.
- 4. From the Main menu, set laser output power using the up/down buttons. Actual output power will follow the setpoint value.

This completes the warm start turn-on sequence. The system is now ready for use.

Note

Whenever the laser is turned off for more than 30 minutes, the system automatically reverts to Standby mode and the Standby menu is displayed. To restart the unit, follow the procedure for a warm start turn-on.

Optimizing Laser Output

There are no adjustments on the Millennia IR. It is simply point and shoot.

Turning Off the Laser

To turn off the laser, simply:

- 1. Press the LASER POWER button to turn off the laser.
- 2. Turn the *key switch* on the power supply to OFF and remove the key to prevent unauthorized use.
- 3. For temporary power down, do nothing more. The system will go to Standby mode automatically in 30 minutes. Or,
- 4. For long-term power down, turn off the power supply.

This completes the turn off sequence.

The RS-232 Serial Port

Pinout/Wiring

The Millennia IR serial port is accepts a standard 9-pin D-sub male/female extension cable for hook-up. Only three of the pins are actually used:

Pin Numbers	Usage	
2	transmit data (Millennia IR out)	
3	receive data (Millennia IR in)	
5	signal ground	

Communications Parameters

Communications must be set to 8 data bits, no parity, one stop bit, using the XON/XOFF protocol (do not use the hardware RTS/CTS setting in your communications software). The baud rate is variable and can be set to 1200, 2400, 4800 or 9600 (default). The rate is determined at system power-up by reading positions 1 and 2 of switch S_1 on the laser head pc board. Figure 6-3 shows the location of the DIP switch on the pc board, and the table below describes the function of the switches.

Switch S₁

Position 1	Position 2	Baud Rate
off	off	1200
off	on	2400
on	off	4800
on	on	9600 (default)

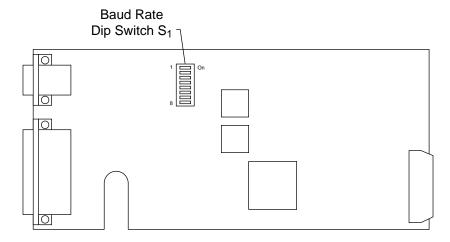


Figure 6-3: Laser head pc board showing the location of baud rate dip switch S_1 .

Command/Query/Response Format

All commands and responses are in ASCII format. Commands to the Millennia IR system are terminated by an ASCII carriage return, line feed, or both. All responses from the Millennia IR are terminated by an ASCII line feed character. In the examples below, a carriage return is indicated by <CR>, and a line feed by <LF>.

Commands

ON - Turn On Laser

ON<CR>

The response to this command depends on whether or not the system is warmed up. Use the ?WAR-MUP% query (see "Queries") to determine the progress of the warm-up cycle (see table below).

A response of "0" means the system is in Standby mode. If this is the case, issue an *ON* command to begin the temperature stabilization cycle. When the response to the *?WARMUP%* query reaches "100%", the laser can be started. Do not issue an *ON* command while the response to *?WARMUP%* is "1 to 99".

If the response to ?WARMUP% is	The response to <i>ON</i> is
0	to begin diode temperature stabilization. (approximately 2 minutes)
1 to 99	an execution error. (The EXE_ERR bit in the status byte is set.)
100	the laser diodes turn on, and the system output ramps to the most recently set power/current.

Note: when the laser turns on, it will be in the mode (power/current) that was in effect when the unit was turned off.

OFF - Turn Off Laser

OFF<CR>

Turns off the laser diodes and diode temperature regulation (the latter reduces electrical power consumption). Latched interlocks are cleared. Thirty minutes after the laser diodes have been turned off, the system enters the Standby mode.

P:x.x - Set Power

Sets laser output power to the nearest tenth watt if the unit has been previously set to power mode using the "M" command. This command is ignored when the system is in current mode. The minimum setting is 0.2 watts, the maximum is 10.5 watts. Commands outside this range are ignored.

P:5<*CR*> Sets the output power to 5.0 W.

P:5.0<CR> Sets the output power to 5.0 W (no change).

P:4.9<CR> Sets the output power to 4.9 W.

C%:xx - Set Percent Current

Sets the laser current to a percentage of maximum current if the unit has been previously set to current mode using the "M" command. This command is ignored when the system is in power mode or when settings less than zero or greater than one hundred percent are requested.

C%:50<CR> Sets both diodes to 50% current.

Mx - Set Mode

Sets the laser mode so that output is current regulated or power regulated. The diode current or output power is ramped to the previous set value.

M1<CR> Sets the laser to power mode.M0<CR> Sets the laser to current mode.

Queries

?P - Get Power Status

?P<CR> Requests the value of the laser output power in

watts. The response looks like "4.90 W<LF>".

?Cx - Get Diode Operating Current Status

?C1<CR> Requests the value of the drive current for diode 1.

Diode 1 = C1, diode 2 = C2. A typical response is "25.36A1<LF>," which is interpreted as 25.36 amps

for diode 1.

?M - Get Mode Status

?M<CR> Requests system mode status. The system responds

with "1<LF>" for power mode, or "0<LF>" for cur-

rent mode.

?IDN - Get Identification String

?IDN<CR> Requests a system identification string. The system

returns an ASCII string that consists of four fields:

manufacturer, product, software revision number, and serial number ("Ø" if the latter is not implemented). A typical return would be "Spectra-Physics Lasers, Millennia, 1.02, 0<LF>."

?STB - Get Status Byte

This query requests a system status byte that indicates which command errors (if any) have occurred and whether the laser is on or off. The integer value returned represents the sum of the value of the bits in the status byte. The bit positions are defined by Table 6-1 below. Each time a status byte is requested, its register is cleared so that a new status byte can be generated.

The status register accumulates the most recent commands and tracks their validity. Consider the following sequence of commands:

P:10 <cr></cr>	Since the requested power is out of range, the EXE_ERR bit is set.
P:5 <cr></cr>	Valid command, sets power to 5 watts.
M1 <cr></cr>	Valid command, sets unit to power mode.
ON <cr></cr>	Valid command, turns on the laser diodes.
?STB <cr></cr>	Reads and clears the status byte.

The status byte returned would be "194<LF>" since the ANY_ERR, LASER_ON, and EXE_ERR bits are set (194=2+64+128). Table 6-1 describes all the possible errors; Table 6-2 lists all the possible combinations

Table 6-1: Query Errors

Binary	Decimal	Name	Interpretation
Digit	Value		
0	1	CMD_ERR (CE)	Command error. Something was wrong with the command format, the command was not understood
1	2	EXE_ERR (EE)	Execution Error A command was properly formatted, but could not be executed. For example, a power command of "P:0 <cr>" was sent, when the minimum allowed power is 0.2 watts.</cr>
2	4	(reserved)	
3	8	(reserved)	
4	16	(reserved	
5	32	SYS_ERR (SE)	Any "system" error. (An open interlock, or an internal diagnostic)
6	64	LASER_ON (LO)	Indicates that laser emission is possible.
7	128	ANY_ERR (AE)	Any of the error bits are set.

Table 6-2: Error Return List

Binary DigitS	Decimal Value	Errors Returned
0100 0000	64	LO
1000 0001	129	CE + AE
1000 0010	130	EE + AE
1000 0011	131	CE + EE + AE
1010 0000	160	SE + AE
1010 0001	161	CE + SE + AE
1010 0010	162	EE + SE + AE
1010 0011	163	CE + SE + EE + AE
1100 0001	193	CE + LO + AE
1100 0010	194	EE + LO + AE
1100 0011	195	CE + EE + LO + AE
1110 0000	224	SE + LO + AE
1110 0001	225	CE + SE + LO + AE
1110 0010	226	EE + SE + LO + AE
1110 0011	227	CE + EE + SE + LO + AE

?WARMUP% - Get Warm-up Status

?WARMUP%<CR>

Reads the status of the system warm-up time as a percent of the predicted total time (see the table below). The system responds with a value similar to "050%<LF>. When the response is "100%<LF>", the laser can be turned on.

Note: an error condition, such as an open interlock, may not affect the *?WARMUP%* command. To check for other errors, request the status byte with the *?STB* query command.

System Status	?WARMUP%
Initial AC power-on warm-up	Between 1% and 99%
System is ready to turn on the laser diodes	100%
System is in Standby mode	0%
System is warming up after leaving Standby mode	between 1% and 99%

?HDREV - Get Head Software Revision

?HDREV<CR> Returns a Millennia IR laser head software revision number similar to "2.01<LF>".

?PSREV - Power supply Software Revision Query

?PSREV<CR> Returns a T40 power supply software revision number similar to "4420 REV D<LF>".

?RMREV - Controller Software Revision Query

?RMREV<CR> Returns the controller software revision number. A

typical response is "1.10<LF>".

?EC - System Error Code Query

?EC<CR> Returns the current error code. The code returned is

the same as that displayed on the controller, if it is attached. Refer to the error code listing in appendix

A for explanations.

?H - History Buffer Query

?H<CR> Returns a 16-byte (16 code) error list from the "his-

tory buffer" with the most recent error listed first. The history buffer only stores error codes generated by the power supply, numbers 0 - 126. Errors from the Millennia IR laser head are not recorded and,

therefore, will not be returned.

?C%SET – Last Current Command Query

?C%SET<CR> Returns the value for the last percentage current

commanded ("C"), not the actual diode current. A

typical response might be "75.1% < LF>".

?PSET - Last Power Command Query

?PSET<CR> Returns the value for the last power command

("P%"), not the actual laser output power. A typical

response might be "0.20W<LF>".

?C%<CR> - Actual Current Setting Query

?C%<CR> Returns a value equal to the actual operating per-

centage of maximum diode current. A typical

response might be "75.1% < LF>".

This completes the operation section.

Chapter 7 Maintenance

Preventive Maintenance

The Millennia IR has been designed for "hands-off" operation, requiring minimal maintenance.

Its top cover protects the internal components from outside contamination and prevents unwanted stray optical radiation from escaping the system.

The Millennia IR should always be operated with the top cover in place.

Dust tubes are used to enclose the beam to minimize the amount of maintenance required. These, too, should always be left in place.

Although removal of the fiber optic bundles is not recommended or needed, always inspect, clean, and re-inspect the fiber ends whenever they are removed from the Z-head.

It is recommended to annually check the safety features of the Millennia IR to ensure safety is maintained (see Chapter 2, "Laser Safety" for details).

Equipment Required

- Dry nitrogen, canned air, or rubber squeeze bulb
- Photographic lens tissue
- Clean forceps or hemostats (optional but very helpful)
- Powder-free finger cots or gloves for handling optical components
- Fiber holding fixture for cleaning and inspection of fiber bundle (optional but very helpful)
- Spectroscopic-grade methanol (methyl alcohol) or propanol (2-propanol or isopropyl alcohol). Acetone may be used on intracavity optics only; do not use it on the fiber bundles.
- Clean dropper or droplet dispensing unit for the alcohol
- Inspection microscope, 50 x to 100 x typical

Cleaning Laser Optics and Optical Fibers

All parts that normally come in contact with laboratory or industrial environments retain surface contamination that can be transferred to optical components during handling, cleaning and assembly. Indeed, skin oils can be very damaging to optical surfaces and coatings and can lead to serious degradation problems under intense laser illumination. It is therefore essential that only clean items come into contact with optical components and the mechanical parts immediately surrounding them.

When cleaning optics, be very careful not to scratch the optic surface. Laser optics are made by vacuum-deposited microthin layers of materials of varying indices of refraction on glass substrates. If the surface is scratched to a depth as shallow as 0.01mm, the operating efficiency of the optical coating will be reduced significantly.

Losses due to unclean optics or fiber ends, which might be negligible in ordinary optical systems, can disable a laser and severely reduce the effectiveness of a frequency doubler. Dust on intracavity mirror surfaces can reduce output power or cause total failure. Cleanliness is essential! However, as long as the Millennia IR intracavity optics are kept enclosed (i.e., the dust tubes are never taken off) and the fiber optics are not removed from the Z-head, there is little need for the routine maintenance associated with ion lasers. However, if cleaning is required, the maintenance techniques described below must be applied with extreme care and with attention to detail.

Remember, "clean" is a relative description; nothing is ever perfectly clean, and no cleaning operation ever completely removes contaminants. Cleaning is a process of reducing objectionable materials to acceptable levels.

Warning!

Never clean the crystal with solvents, and only use puffs of air to remove dust. If the crystal becomes contaminated, consult the factory.

Warning!

NEVER remove any of the optics in the Millennia IR laser. They are enclosed to minimize contamination and are designed to be cleaned in-place when and if required.

Caution!

Always wear clean, lint-free finger cots or gloves when handling optics and intracavity parts. Remember not to touch any contaminating surface while wearing gloves; you can transfer oils and acids onto the optics.

- Work in a clean environment and, whenever possible, over an area covered by a soft, lint-free cloth or pad.
- Wash your hands thoroughly with liquid detergent, then put on finger cots before touching any optic.
 - Body oils and contaminants can render otherwise fastidious cleaning practices useless.
- Use filtered dry nitrogen, canned air, or a rubber squeeze bulb to blow dust or lint from the optic surface before cleaning it with solvent. Permanent damage can occur if dust scratches the glass or mirror coating.
- Use spectroscopic, electronic, or reagent grade solvents. Don't try to remove contamination with a cleaning solvent that may leave other impurities behind.
 - Since cleaning simply dilutes contamination to the limit set by solvent impurities, solvents must be as pure as possible. Use as little solvent as

possible: as any solvent evaporates, it leaves impurities behind in proportion to its volume. Avoid rewiping a surface with the same swab: a used swab and solvents will redistribute contamination, they will not remove it.

- Store methanol and acetone in small glass bottles.
 These solvents collect moisture during prolonged exposure to air.
 Avoid storage in bottles where a large volume of air is trapped above the solvent.
- Use Kodak Lens Cleaning PaperTM (or equivalent photographic cleaning tissue) to clean optics.
- Use each piece of tissue only once: dirty tissue merely redistributes contamination—it does not remove it.

Warning!

Do not use lens tissue designated for cleaning eye glasses. Such tissue contains silicones. These molecules bind themselves to the optic coatings and can cause permanent damage. Also, do not use cotton swabs, e.g., Q-TipsTM. Solvents dissolve the glue used to fasten the cotton to the stick, resulting in contaminated coatings. Only use photographic lens tissue to clean optical components.

Tools and mechanical items used with optical systems should be thoroughly degreased and cleaned (preferably in an ultrasonic bath) and rinsed in clean solvents (acetone or alcohol) and/or deionized water prior to use. If used repeatedly over time, these items should be re-cleaned at regular intervals. If you have any questions regarding these procedures, please contact your Spectra-Physics Lasers Service representative.

General Procedure for Cleaning Optics

All optics are to be cleaned in place.

Warning!

NEVER remove any of the optics in the Millennia IR laser. They are enclosed to minimize contamination and are designed to be cleaned inplace if required.

- 1. Remove the dust cover when the beam splitter or output coupler needs to be inspected and/or cleaned.
- 2. Use a squeeze bulb or dry nitrogen to blow away any dust or grit on the surface, then test to see if a normal power level returns. If power is acceptable, do not clean any further.
 - If canned air is used, hold the can in an upright position to avoid liquid freon from contaminating the optic.
- 3. If solvent cleaning is required, use a tissue folded in a hemostat to clean the optic.

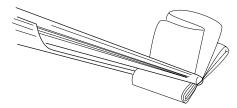


Figure 7-1: Lens Tissue Folded for Cleaning

- a. Fold a piece of lens tissue into a pad about 1 cm on a side and clamp it in a hemostat (Figure 7-1).
- b. If required, cut the paper with a solvent-cleaned tool to allow access to the optic.
- c. Saturate the pad with methanol, shake off the excess, resaturate, and shake again. *No not use excessive solvent*!
 - Excess solvent can wick or run down the surface and can attack any adhesive that might be holding the optic to the mount or base and either loosen it or, worse, contaminate the optical surface with adhesive material.
- d. Wipe the surface in a single motion.
 Be careful that the hemostat does not touch the optic surface or the coating may be scratched.
- 4. Inspect the cleaned optic under ample light to verify the optic actually got cleaner, i.e., you did not replace one contaminant with another.
- 5. Replace the dust cover(s). Never leave the covers off longer than it takes to clean the optic. However, allow the optic to dry before replacing the cover(s).

This concludes the procedure for cleaning optics.

General Procedure for Cleaning Fiber-optic Bundles

Prior to cleaning the fibers, it is advisable to briefly inspect the fiber end coatings for damage or burn areas.

Before you do this, however, turn off the power supply to ensure the diode is disarmed.

The fibers may be easily cleaned using a fiber holder such as Spectra-Physics Lasers P/N 0129-2872 and a small inspection microscope (50 to 100 power). In lieu of the holder, it is advisable that the fiber connector be gently held in a small clamp or vise that is lined with clean lens tissue. Whenever the exposed fiber ends are handled, *always* wear clean, dust-free finger cots or gloves.

Inspection of the fiber end coatings should reveal a uniform, bluish, smooth and shiny surface with few scratches, inclusions or dust particles.

After initial inspection, the fiber ends should be cleaned by one (or both) of the methods described below, as required, to achieve the desired results.

- 1. Begin the cleaning using the "drop and drag" method.
 - a. Hold the fiber so that the coated surface is facing upward, and place a sheet of lens tissue over it.
 - b. Squeeze a drop or two of methanol onto it, and slowly and steadily draw the tissue across the surface to remove dissolved contaminants and to dry the surface. Repeat as necessary, using a clean tissue each time.
- 2. For stubborn contaminants, use a tissue in a hemostat to clean the fiber end.
 - a. Fold a piece of tissue in half repeatedly until you have a pad about 3 to 4 mm wide (trim with clean forceps if necessary), and clamp it in a plastic hemostat (Figure 7-1).
 - b. Saturate the tissue with methanol, shake off the excess, resaturate, and shake again.
 - c. Gently wipe the surface in a single motion.
 - Take care as you wipe the surface as this method applies more stress to the coatings and can, if done too roughly or too often, damage the fiber ends.
 - Also be careful that the hemostat does not touch the optical surface or the coating may be scratched.
 - d. Inspect the cleaned surface to verify the optic actually got cleaner, i.e., that you did not replace one contaminant with another.
 - e. Replace the fiber bundle into the Z-head.
 - It is not advisable to cap or leave exposed any fiber ends that have been cleaned. This only invites further contamination and further

cleaning. Cleaning must be held to a minimum to prevent stress to the coatings and the fiber itself.

This concludes the procedure for cleaning the fiber-optic bundles.

The Spectra-Physics Lasers Millennia IR laser is a *Class IV—High Power Laser* whose beam is, by definition, a safety and fire hazard. Take precautions to prevent accidental exposure to both direct and reflected beams. Diffuse as well as specular beam reflections can cause severe eye or skin damage.

Because the Millennia IR is designed for operation at 1064 nm and its output is invisible, it is especially dangerous. Infrared radiation passes easily through the cornea, which, when focussed on the retina, can cause instantaneous and permanent damage. Always wear proper eye protection when working on the laser and follow the safety precautions in Chapter 2, "Laser Safety."

This troubleshooting guide is for use by you, the user. It is provided to assist you in isolating some of the problems that might arise while using the system. A complete repair procedure is beyond the scope of this manual. For information concerning the repair of your unit by Spectra-Physics Lasers, please call your local service representative. A list of world-wide service sites is included at the end of Chapter 9. Before you call, note your current software revision number; it can be found on the Info menu. Simply scroll to the bottom of the list of specifications displayed on the screen.

Troubleshooting Guide

Symptom: The controller screen does not light up.

Possible Causes	Corrective Action
Power is not available to the system.	If the power supply fan is off: a. verify that the power cord is plugged in. b. verify the voltage selector is set to the correct line voltage. c. verify the internal voltages are correct (call your Spectra-Physics Lasers service representative). d. verify the fuses in the power supply are not blown.
Power supply has failed.	Call your Spectra-Physics Lasers service representative.

Symptom: Low power.

Possible Causes	Corrective Action		
Dirty optics	Clean, but do not remove the optics.		
The beam is clipped.	Call your Spectra-Physics Lasers service representative.		

Symptom: The Millennia IR shuts itself off in power mode.

Possible Causes	Corrective Action	
Dirty optics	Clean, but do not remove the optics. Do not attempt to open the Z-head.	
Incorrect pick-off calibration (power readout).	Call your Spectra-Physics Lasers service representative.	

Symptom: The Millennia IR shuts itself off in current mode.

Possible Causes	Corrective Action
There should be no reason for the unit to shut down in current mode other than for power failure or an interlock interruption. This will show up on the controller as an error message.	Call your Spectra-Physics Lasers service representative.

Symptom: The Millennia IR will not lase.

Possible Causes	Corrective Action
The shutter is not open.	Move the shutter lever to the open position (O).
A beam tube has fallen into the beam path	Carefully remove the head cover and reinstall the beam tube.
The Millennia IR and power supply have not completed the turn-on sequence	The Millennia IR turn-on will take approx. 20 seconds. to complete. Allow enough time for the turn-on sequence.
An interlock is open.	Ensure that the head cover is properly installed and latched. Ensure that the LASER ENABLE key on the power supply is in the ON position. Note: an open interlock should show up on the controller as an error.

Symptom: Long-term stability/beam pointing is poor.

Possible Causes	Corrective Action
The laser head is not properly locked down to the optical table	Be sure to use the clamps that were supplied with your Millennia IR. These clamps were specially designed to eliminate any side loads to the Millennia IR feet which causes undo stress to the resonator.
The jam nuts on the feet are not locked.	Once the laser position and height have been adjusted, the jam nuts should be adjusted all the up and tightened against the bottom plate.
The routing mirrors are not installed correctly.	If the routing mirrors are used as part of the beam delivery set-up, ensure that they are assembled and locked down correctly.

Replacement Parts

The following is a list of parts that may be purchased to replace broken or misplaced components. Also listed are optional components that may be purchased to enhance your system.

Description	Part Number
Main pc board assembly	0451-6850S
Light pick-off assembly	0451-2480
Table clamp kit	0451-2490
Diode module assembly, new	0129-4106S
Diode module assembly, ETN	0129-4106-ETN
Light bulb, white, 28 V (emission indicator, 10 ea.)	3901-1300S
Controller, Millennia IR	TREM-C2-08
Beam splitter	G0062-000

Customer Service

At Spectra-Physics Lasers, we take great pride in the reliability of our products. Considerable emphasis has been placed on controlled manufacturing methods and quality control throughout the manufacturing process. Nevertheless, even the finest precision instruments will need occasional service. We feel our instruments have excellent service records compared to competitive products, and we hope to demonstrate, in the long run, that we provide excellent service to our customers in two ways: first by providing the best equipment for the money, and second, by offering service facilities that get your instrument repaired and back to you as soon as possible.

Spectra-Physics Lasers maintains major service centers in the United States, Europe, and Japan. Additionally, there are field service offices in major United States cities. When calling for service inside the United States, dial our toll free number: 1 (800) 456-2552. To phone for service in other countries, refer to the "Service Centers" listing located at the end of this section.

Order replacement parts directly from Spectra-Physics Lasers. For ordering or shipping instructions, or for assistance of any kind, contact your nearest sales office or service center. You will need your instrument model and serial numbers available when you call. Service data or shipping instructions will be promptly supplied.

To order optional items or other system components, or for general sales assistance, dial 1 (800) SPL-LASER in the United States, or 1 (650) 961-2550 from anywhere else.

Warranty

This warranty supplements the warranty contained in the specific sales order. In the event of a conflict between documents, the terms and conditions of the sales order shall prevail.

Unless otherwise specified, all parts and assemblies manufactured by Spectra-Physics Lasers are unconditionally warranted to be free of defects in workmanship and materials for a period of one year following delivery of the equipment to the F.O.B. point.

Liability under this warranty is limited to repairing, replacing, or giving credit for the purchase price of any equipment that proves defective during the warranty period, provided prior authorization for such return has been

given by an authorized representative of Spectra-Physics Lasers. Spectra-Physics Lasers will provide at its expense all parts and labor and one-way return shipping of the defective part or instrument (if required). In-warranty repaired or replaced equipment is warranted only for the remaining portion of the original warranty period applicable to the repaired or replaced equipment.

This warranty does not apply to any instrument or component not manufactured by Spectra-Physics Lasers. When products manufactured by others are included in Spectra-Physics Lasers equipment, the original manufacturer's warranty is extended to Spectra-Physics Lasers customers. When products manufactured by others are used in conjunction with Spectra-Physics Lasers equipment, this warranty is extended only to the equipment manufactured by Spectra-Physics Lasers.

This warranty also does not apply to equipment or components that, upon inspection by Spectra-Physics Lasers, discloses to be defective or unworkable due to abuse, mishandling, misuse, alteration, negligence, improper installation, unauthorized modification, damage in transit, or other causes beyond the control of Spectra-Physics Lasers.

This warranty is in lieu of all other warranties, expressed or implied, and does not cover incidental or consequential loss.

The above warranty is valid for units purchased and used in the United States only. Products shipped outside the United States are subject to a warranty surcharge.

Return of the Instrument for Repair

Contact your nearest Spectra-Physics Lasers field sales office, service center, or local distributor for shipping instructions or an on-site service appointment. You are responsible for one-way shipment of the defective part or instrument to Spectra-Physics Lasers.

We encourage you to use the original packing boxes to secure instruments during shipment. If shipping boxes have been lost or destroyed, we recommend that you order new ones. We can return instruments only in Spectra-Physics Lasers containers.

Service Centers

Benelux

Spectra-Physics BV Prof. Dr. Dorgelolaan 20 5613 AM Eindhoven The Netherlands Telephone: (40) 2 65 99 59

Fax: (40) 2 43 99 22

France

Spectra-Physics S.A.R.L. Z.A. de Courtaboeuf Avenue de Scandinavie 91941 Les Ulis Cedex Telephone: (01) 1 69 18 63 10

Fax: (01) 1 69 07 60 93

Germany and Export Countries*

Spectra-Physics GmbH Siemensstrasse 20 D-6100 Darmstadt-Kranischstein Telephone: 06151 7080

Fax: 06151 79102

Japan

Spectra-Physics KK Daiwa-Nakameguro Building 4-6-1 Nakameguro Meguro-ku, Tokyo 153 Telephone: (03) 3794-5511

Fax: (03) 3794-5510

United Kingdom

Spectra-Physics Ltd. **Boundary Way** Hemel Hempstead Herts, HP2 7SH

Telephone: (01442) 25 81 00

Telex: 826411

Fax: (01422) 68 538

^{*} All European and Middle Eastern countries in this region not included elsewhere on this list.

Service Centers (cont.)

United States and Export Countries*

Spectra-Physics Lasers 1330 Terra Bella Avenue Post Office Box 7013 Mountain View, CA 94039-7013

Telephone: 1 (800) 456-2552 (Service) or

1 (800) 436-2332 (Service) or 1 (800) SPL-LASER (Sales) or 1 (800) 775-5273 (Sales) or 1 (650) 961-2550 (Operator)

Fax: 1 (650) 964-3584

E-mail: splaser@ix.netcom.com

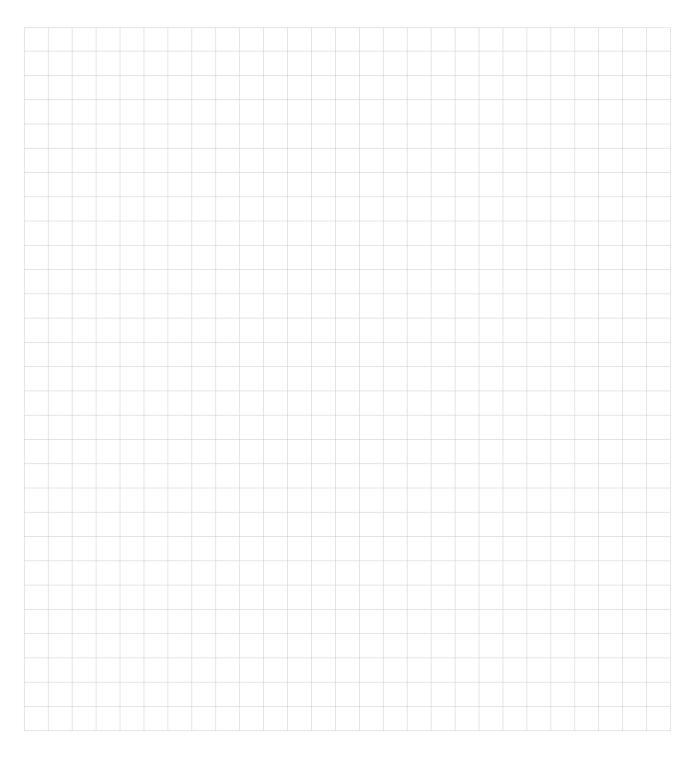
http://www.splasers.com

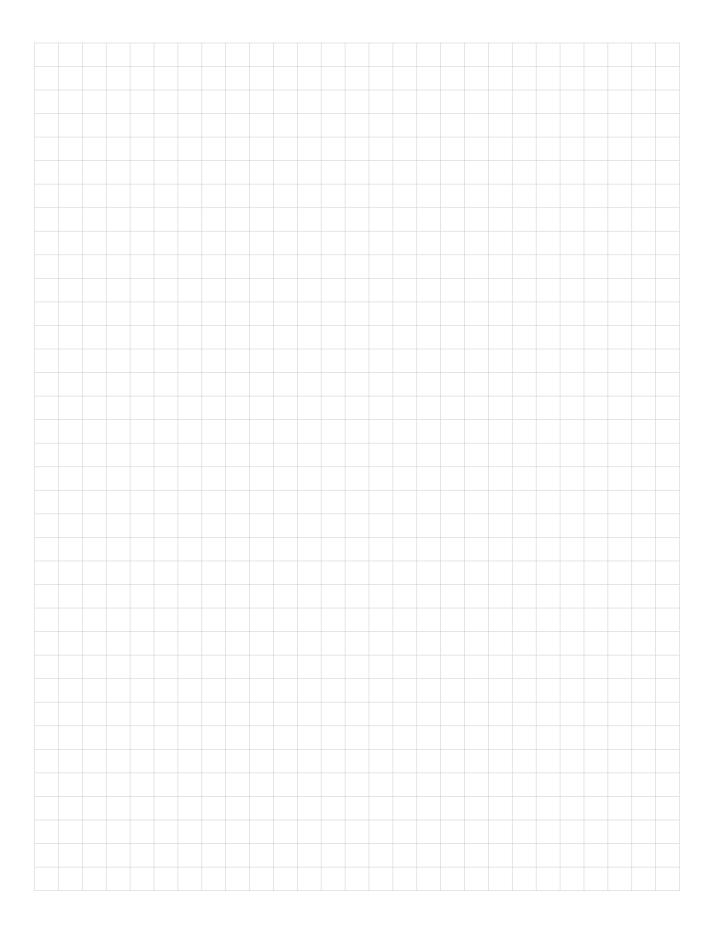
^{**}And all countries not included elsewhere on this list.

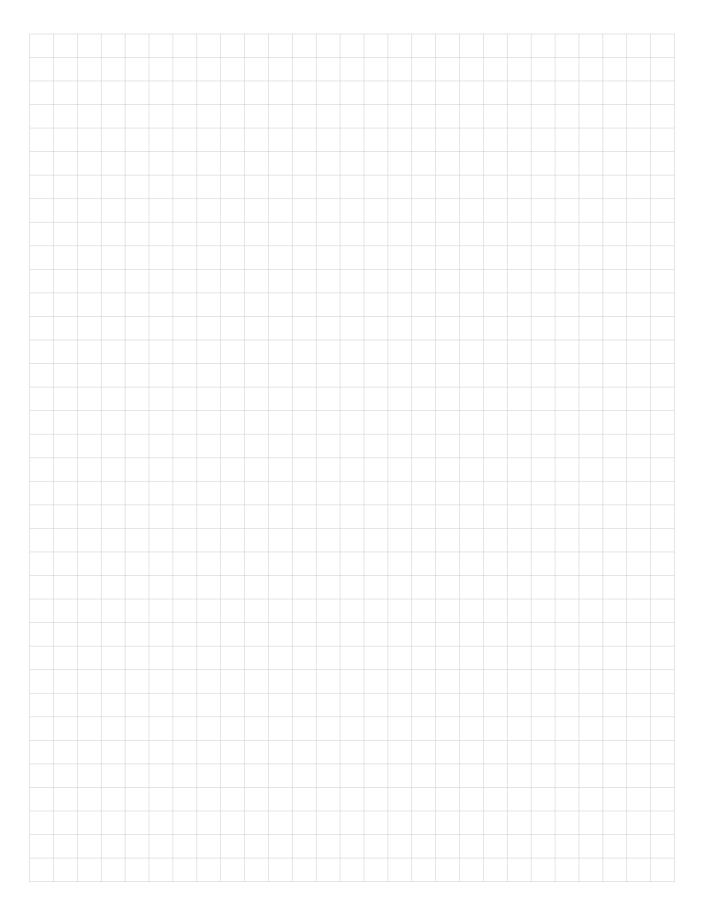
Appendix A Error Codes

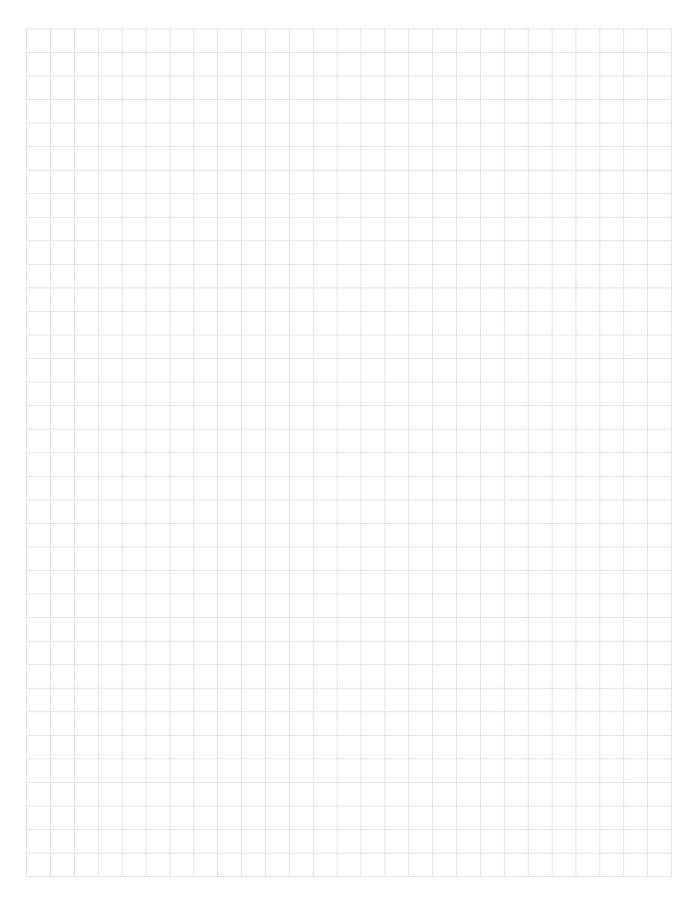
Listed below are all the error codes and messages that might be displayed on the controller (not the T40 power supply) while using the Millennia IR system. Most are self-explanatory and most errors can be corrected by the user. In the event the error cannot be corrected, or the action required to correct the error is not known, call your Spectra-Physics Lasers service representative. Before calling, however, write down the code and message.

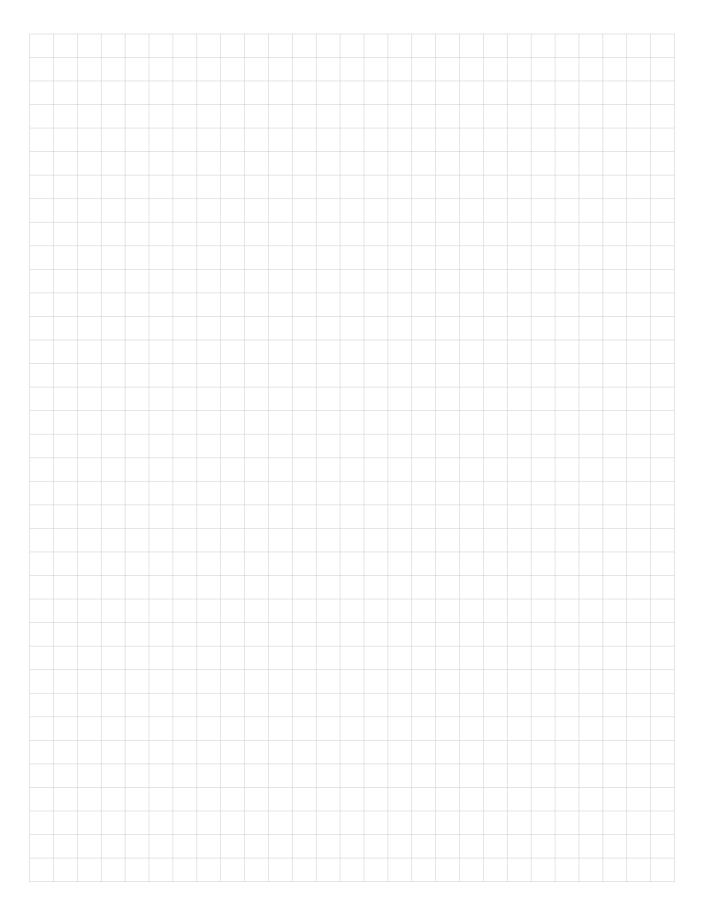
Code 0 to 126 are generated by the T40 power supply, codes 127 and up are generated by the Millennia IR laser head. Codes 142 to 147 are latched interlock messages that indicate the T40 shut off without a command to do so. These latched interlock messages are cleared by either:

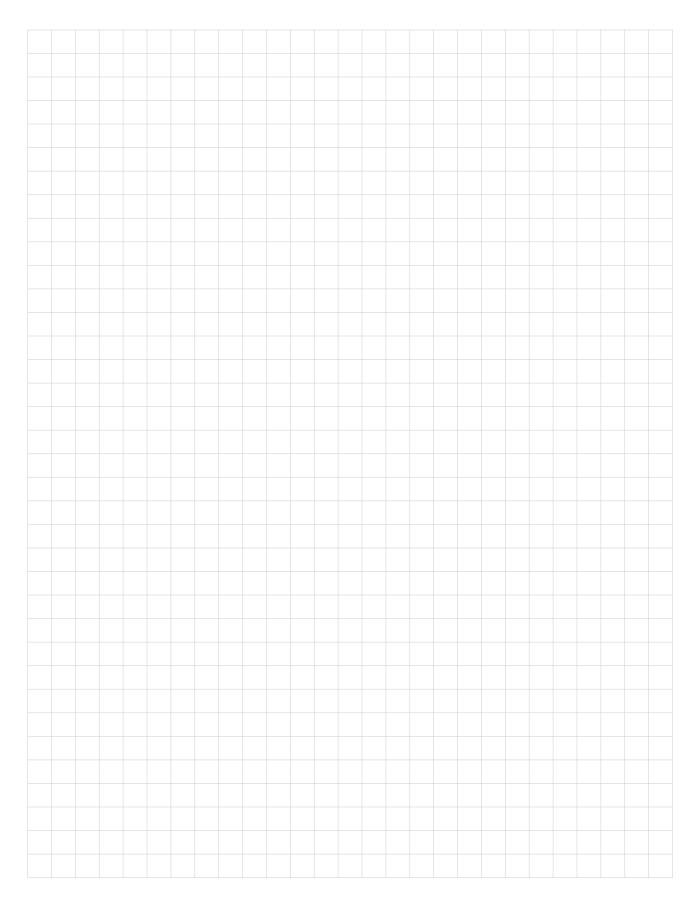

- a. pressing the LASER POWER switch on the controller, or
- b. sending the *OFF* command through the RS232 port.


The Info menu HST line on the controller lists the three most recent error/status codes with the most recent listed first. The RS232 ?H query reports the most recent 16 codes, again with the most recent listed first.


Error Code	Error Message		
0	Everything is fine		
1	Power Mode Ready		
2	Current Mode Ready		
3	Power Mode Adjust		
4	Current Mode Adjust		
5	Diodes off, temperature stable, ready to turn on		
8	Power Supply in Standby mode		
61	EEPROM data read error		
62	AC Fault, >50ms		
63	System Boot Marker		
64	Communications error		
65	Laser Power Outside Ready Range		
66	Power adjust timeout		
67	Passbank over temp		
68	Passbanks current limited		
69	Diode Module ilock test: bad voltage		
70	Diode Module ilock test: bad logic		
71	Diode Module Safety Check 2: bad voltage		


Error Code	Error Message	
72	Diode Module Safety Check 2: bad logic	
73	Diode Module Safety Check 1: bad voltage	
74	Diode Module Safety Check 1: bad logic	
81	EEPROM data not available @ startup	
82	EEPROM fault on write condition	
83	Bad config for uP	
84	Compressor failed startup test	
85	Heater failed startup test	
86	Shorted therm #2 in power supply	
87	Open thermistr #2 in power supply	
88	Shorted therm #1 in power supply	
89	Open thermistr #1 in power supply	
90	Multiple errors	
91	Diode over temperature	
92	Diode under temperature	
93	Current limit passbank 2 active	
94	Current limit passbank 1 active	
95	Power supply interlock active	
96	Safety relay for D2 closed, s.b. open	
97	Safety relay for D2 open, s.b. closed	
98	Safety relay for D1 closed, s.b. open	
99	Safety relay for D1 open, s.b. closed	
127	Everything's fine	
130	Z-head thermistor shorted	
131	Z-head temperature high	
132	Z-head thermistor open	
133	SHG duty cycle error	
134	SHG thermistor shorted	
135	SHG thermistor or heater open (check cable)	
136	Head cover interlock open	
140	Controller interlock open	
141	Communications error between head & supply	
142	System shut off: check HST on info menu	
143	System shut off: pwr sply interlock	
144	System shut off: head interlock	
145	System shut off: REMOTE interlock	
146	System shut off: power adjust timeout	
147	System shut off: current limit	
148	Controller communications time out	
200	Diode calibration required	


Notes



Spectra-Physics Lasers User's Manual— Problems and Solutions

We have provided this form to encourage you to tell us about any difficulties you have experienced in using your Spectra-Physics Lasers instrument or its manual—problems that did not require a formal call or letter to our service department, but that you feel should be remedied. We are always interested in improving our products and manuals, and we appreciate all suggestions.

Thank you.

From:		
Name		
Instrument Model Number	Serial Number	
Suggested Solution(s):		

Mail To:

Spectra-Physics Lasers, Inc Diode-Pumped Solid State Product Manager 1330 Terra Bella Avenue Post Office Box 7013 Mountain View, CA 94039-7013 U.S.A.

E-mail: sales@splasers.com http://www.splasers.com

FAX to:

Attention: Diode-Pumped Solid State Product Manager (650) 969-3546